
Retrospective Theses and Dissertations

2007

Engineering design using genetic algorithms
Xiaopeng Fang
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Fang, Xiaopeng, "Engineering design using genetic algorithms" (2007). Retrospective Theses and Dissertations. 15943.
http://lib.dr.iastate.edu/rtd/15943

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15943?utm_source=lib.dr.iastate.edu%2Frtd%2F15943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Engineering design using genetic algorithms

by

Xiaopeng Fang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:
James E. Bernard, Co-major Professor
Julie A. Dickerson, Co-major Professor

Greg R. Luecke
Daniel Ashlock

Atul Kelkar

Iowa State University

Ames, Iowa

2007

Copyright © Xiaopeng Fang, 2007. All rights reserved.

UMI Number: 3274886

3274886
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

ii

TABLE OF CONTENTS

ABSTRACT iii

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. BACKGROUND 4

CHAPTER 3. HIGH DIMENSIONAL SYSTEM DESIGN
USING GENETIC ALGORITHMS & VISUALIZATION 23

CHAPTER 4. COMPLETELY DOMINANT GENETIC
ALGORITHMS 35

CHAPTER 5. DIVERSITY AND ROBUSTNESS IN
MULTIOBJECTIVE OPTIMIZATION 55

CHAPTER 6. INTERACTIVE GRAPHICS FOR ENGINEERING
DESIGN INVOLVING DYNAMIC EQUATIONS AND
GENETIC ALGORITHMS 66

CHAPTER 7. DISCUSSIONS AND CONCLUSION 81

Appendix: ENGINEERING DESIGN SOFTWARE 86

REFERENCES 102

iii

ABSTRACT

As modern computational and modeling technologies grow, engineering design

heavily relies on computer modeling and simulation to accelerate design cycles and save cost.

A complex design problem will involve many design parameters and tables. Exploring

design space and finding optimal solutions are still major challenges for complex systems.

This dissertation proposed to use Genetic Algorithms to optimize engineering design

problems. It proposed a software infrastructure to combine engineering modeling with

Genetic algorithms and covered several aspects in engineering design problems. The

dissertation suggested a new Genetic Algorithm (Completely dominant Genetic algorithm) to

quickly identify High Performance Areas for Engineering Design. To help design engineers

to explore design space, the dissertation used a new visualization tool to demonstrate high

dimensional Genetic Algorithm results in dynamical graphics. Robustness of design is

critical for some of the engineering design applications due to perturbation and

manufacturing tolerance. This dissertation demonstrated to use Genetic Algorithms to locate

robust design areas and provided a thorough discussion on robustness and diversity in depth.

1

CHAPTER 1. INTRODUCTION

1.1. Introduction
 In a product design process, many complex multiobjective optimization problems

occur. For example, in designing an engine controller, appropriate fuel injection times

and air-fuel ratios have to be decided to improve engine fuel economy and power

performance. But engine fuel economy and power are also affected by hundreds of other

engine conditions, such as intake manifold pressure, intake manifold temperature, coolant

temperature etc. How to control fuel injection time and air-fuel ratio with respect to these

conditions to achieve the optimal fuel economy and power performance is an extremely

complex problem. Engineers need to improve the design using simulation and

optimization techniques. There are many challenging issues in solving complex

engineering problems. The first issue is how to improve the design efficiency. Current

industries need to develop high quality products in a short time due to competition or

design cycle requirements. Traditional design processes can be much improved by using

computational engineering tools. The second issue is how to optimize the complex

design. The engineering optimization problems are normally high dimensional and with

conflicting objectives. The optimization algorithms need to be introduced to help explore

design space and find the optimal solution. The third issue is how to meet robustness

requirements. Engineering design always has uncertainties due to manufacturing

tolerance and perturbation in real operation. These three issues are the main focus of this

dissertation.

Rapid prototyping helps to speed up the design process and explore research and

development ideas. Engineers are able to build complex computational models to

simulate many physical dynamics, such as combustion dynamics, fluid dynamics, and

vibration dynamics. Model accuracy has been improving as we understand more about

the system and computational power is enhanced. Industries are able to study prototyping

before any manufacture production happens. However, even with the help of

computational modeling, the design process is a long and tedious procedure and requires

a lot of experiments and simulations to explore the design concept. How to improve

design process efficiency is still one of major challenges in current industrial world.

This dissertation proposes some new design methods to help engineers get

through the obstacles. Automatic design is to combine optimization tools with modeling

2

process. Engineers are able to explore and optimize the system during modeling process.

Interactive design is to further explore the system using expert knowledge. Designers are

able to provide guidelines to optimization process and redefine conditions during

optimization. Data management system provides ways to handle data analysis and support

automatic and interactive design process. Most importantly, new data visualization

methods have been applied to help better understand the system so as to improve the

design and reduce the design cycle time.

 The second issue that the dissertation is addressed is complex system

optimization. As engineering problems become more numerically complex, it is difficult

to find a good solution due to constraints on feasible space, natural conflicts between

optimization objectives, and lack of understanding of what a good solution is. In the

engine example mentioned above, for restricted emission requirements, optimal fuel

injection times and air fuel ratios are changing with engine conditions. Fuel economy and

power are always two conflicting objectives. Considering that there are numerous other

design variables, such as air pressure and injection pressure, affecting engine fuel

economy and power performance, the whole design task is complex and requires

tremendous design and test efforts.

 As engineers face design optimization problems in daily basis, general purpose

searching algorithms are needed to assist them to find solutions quickly. The dissertation

proposes to use Genetic algorithms (GAs), which are a popular type of searching

algorithms. GAs use the evolution idea of survival of the fittest, to do a population based

search. With the help of GAs and graphical user friendly interface of GA software,

engineers can solve complex optimization problems without fully understanding the

system and gain deep knowledge of the system by analyzing GA searching results.

 One of difficulties in engineering design and multiobjective optimization is to

meet robustness requirement. The dissertation presents a new Genetic Algorithm, which

is designed to handle robust optimization problems. The new Genetic Algorithm

combining with Clustering algorithm is capable to guide the optimization search to the

most robust area. Several examples have been used to prove the new concept.

 This dissertation focuses on general multiobjective optimization problems

occurring in engineering design. The goal is to speed up the design process, explore

complex system design problems better, and meet design robustness requirement. The

organization of the dissertation is as follows: Chapter 1 contains the general introduction

3

of the dissertation. Chapter 2 is literature review in related research areas, and

background information about motivation of research. Chapter 3 gives a real industrial

design example and presents results generated from Engineering design Genetic

Algorithm Software. Chapter 4 discusses uncertainty in optimization problem and

proposes a new approach to handle multiobjective optimization in GA. Chapter 5 is the

continuous discussion on multiobjective GA algorithm dealing with uncertainty,

including diversity and design robustness using several examples. Chapter 6 provides

some of my experience regarding to using graphics to show GA results for better

understanding. Finally, a brief conclusion and some future potential research areas are

given. A description about engineering design software created for applying these

techniques to engineering design is in the appendix.

4

CHAPTER 2. BACKGROUND

2.1. Overview
 This chapter provides background information on three different multiobjective

optimization areas: Engineering Design Optimization using GAs, a new Genetic

Algorithm (CDGA), and robustness in multiobjective optimization. It also provides a

literature review of related research areas.

 Multiobjective optimization problems have several objectives to be

simultaneously optimized and sometimes some of objectives are conflicting. The

difficulty in optimizing conflicting multiobjective problems is lack of the global optimum

and existence of many local optimal areas as dimension increases. There may be no

global optimum for the conflicting multi-objective problems. Considering in vector space,

if all elements in a vector are optimal, the vector is considered as the global optimum. But

if there is no other ones better than one vector in all dimension. This vector is considered

as a non-dominate solution. The optimum in multiobjective optimization is the Pareto

Front, which is a set of non-dominant solutions. All non-dominant solutions form the

Pareto Front set. There is no guarantees that the Pareto Front set is connected or convex.

Fully exploration for the Pareto Front set sometimes is very difficult.

 Current multiobjective optimization techniques fall into two categories:

combining multiple objectives into one scalar objective, whose solution is just one point

in the Pareto Front, and searching the Pareto Front. The first category changes

multiobjective problems into single objective problems so that all traditional optimization

methods can be applied to, such as gradient methods and simulate annealing. The

disadvantage of changing to single objective problems is that the optimal solution is only

the solution that is designed to be searched. The whole Pareto Front set is not explored.

The second category is trying to explore the full Pareto Front set. Many traditional

optimization methods are hard to apply for this kind of optimization. Heuristic search

methods are the main techniques used for searching for the Pareto Front because they do

not require mathematical descriptions of optimization problems and are guaranteed to

find good solutions in a reasonable time. The disadvantage of heuristic search is that it

might not always find the best solutions and the search is time consuming.

5

 The dissertation is inspired by the multiobjective optimization problems met in the

real industry design. It intends to help engineers to solve multiobjective optimization

problems with robustness requirements using genetic algorithms.

2.2 Dynamics and control system
 System dynamics are the time series responses of a system to a set of inputs. The

dynamics of the system can be viewed as a time-dependent function of the set of inputs,

but the function is hard to be defined for a complex system. Dynamics are normally

described using high dimensional differential equations, which can be modeled in

simulation. But simulation has to change the continuous dynamical system to a discrete

time system in the digital world. The simulation result is very sensitive to the simulation

time step. Generally, the smaller the time step is, the closer the result is to the real value.

System response errors can be controlled by simulation time step and integration

algorithms. If differential equations describe system dynamics as accurate as real

dynamics, simulation response can be modeled very close to real response. Dynamics in

many of complex system such as vehicle dynamics and fluid dynamics have been

simulated using sophisticated computer models.

Modeling uses a simplified representation of a system to enhance our ability to

understand, predict, and control the behavior of the system [74]. Modeling is an important

process in developing new industrial products. Thanks to the powerful modeling

software, engineers are able to set up dynamic models for complicated systems very

quickly when they have understand system dynamics.

The design process involves modeling, simulation, and evaluation. According to

Roosenburg and Eekels [95], the design process is iterative and consists of analysis,

synthesis, simulation, evaluation and decision. It is rare that the simulation of the first

design will meet the expected properties. Designers have to adjust system parameters,

even change system design to meet the performance criteria. It is viewed as a tuning

process in controller design [12]. The process defined by Roosenburg and Eekels is

shown in figure 2.1. The process can be viewed as an optimization process as stated by

Simon [99].

6

2.3. Optimization
Optimization finds the minimum or maximum value for a function and its

location, while design problems need to meet some performance criteria. It is always

possible to change a design problem into an optimization problem. Designing system

parameters is changed into finding the location in the input space that optimizes the

system.

Optimization problems can be formalized as the follows: Vector X∈x where X is

a subspace of Rn, objective function))x(,),x(),x(((x) kfff K21=f ∈ Rk. The goal is to

minimize (x)f with X∈x subject to some conditions G(x)>0. For high dimensional

multiobjective problems, k and n are larger than 1. (Note that minimizing (x)f is

equivalent to maximizing (x)f-). The conditions G(x)>0 are constraints.

If (x)f is a continuous function, according to Newton’s theory, the minimum

occurs either at the boundary or where ∂ (x)f /∂ x = 0. In order to solve the problem

based on Newton’s theory, we need to solve equation 0),...,(1 =∇ nxxf and find all

singular points for (x)f . The nonlinear equation 0),...,(1 =∇ nxxf is normally not easy to

solve.

To avoid solving difficult nonlinear equations and calculating the second

derivative to find out whether a point is a local minimum, local maximum, or saddle

point, many optimization search algorithms have been developed. If optimization

algorithms calculated the gradient, they are called gradient-based search algorithms such

as steepest descent and conjugate gradient [52, 86]. The basic idea is the search begins

with a random start point. At each iteration step, the search will move in the direction

with the largest decrease in the value of (x)f , which is the direction of directional

derivative has the greatest value. The steepest descent method is defined as the following

formula.
kkkk Fxx ∇−=+ α1

kk xx ,1+ = values of the variables in the k and k+1 iteration

F(x) = objective function to be minimized (or maximized)

∇ F = gradients of the objective function
kα = the size of the step in the direction of travel

The steepest descent method is known for its simplicity but seldom converges reliably.

7

It is well known that the gradient algorithms tend to get stuck in local optima.

There are many variations on how to control the step size to avoid being stuck in local

optimum. In practice, the gradient is often hard to compute. Newton’s gradient

optimization methods require the calculation of not only the first derivative, but also the

inverse Hessian. Conjugate gradient methods are invented for solving the quadratic

problem: minimizing (½) xTQx – bTx. For non-quadratic problems, it is hard to

approximate Q. In dynamical modeling, there are no clear mathematical equations

defining the relation between output and input. To use gradient based algorithms to

optimize system, the gradient of each parameter at each state has to be calculated through

simulation. The calculation cost will increase exponentially as the number of parameters

increases. In real engineering optimization, systems are normally nonlinear and have

many complex nonlinear phenomena, such as bifurcation and chaos. In addition, many

design problems involve curve design. A curve is a look up table defining a function of

two variables. For example, hydraulic systems often have curves for valves that define the

relationship between flow or pressure and the position of the valve. In real industry

design, curves are often converted to finite dimension design variables using interpolation

or curve parameterization. Two close curves will sometimes result in significantly

different response. Therefore, objective functions in engineering optimization problems

are often not smooth, sometimes even not continuous with respect to the curve. It is

difficult to apply gradient optimization methods to problems with non-smooth objective

functions.

Another approach is using stochastic search. If there is no limit on execute time

and cost, the best solution can always be found through a complete search. Due to the

curse of dimensionality, the search space increases exponentially with dimensionality.

Modern heuristic search algorithms are based on the assumption that good solutions are

more probably close to other known solutions than randomly picked solutions. The basic

idea of heuristic search algorithms is only searching paths that tend to lead to the goal

rather than searching the whole space. By minimizing searching space, heuristic search

algorithms can find solutions much quicker than random searching. For any heuristic

algorithm, it needs an evaluation function to decide how good the path is. This evaluation

will decide what the next search path at the next iteration is.

8

 Figure 2.1 Design Process

2.4. Heuristic search algorithms
2.4.1. Hill climbing algorithm

There are many different heuristic search algorithms. One of most common earlier

used algorithms is hill climbing. The basic strategy is to evaluate all possible paths and

choose the best one (analogous to climbing a hill). The well-known disadvantages of hill

climbing algorithm are: 1. If it starts at a foothill, it is not likely to find the hill summit. 2.

If the plane is flat, hill climbing algorithm has no clue which direction it should go. 3. If

the search reaches a local top, it has to go down to find the global one.

The advantage of hill climbing is its simplicity and its easy implementation. It has

no requirement on optimization functions and pre-knowledge of the problem. The only

thing it needs is an evaluation function to evaluate each generated solution. Due to its

Function

Criteria

Provisional

Expected

Value of design

Approved
d i

Analysis

Simulation

Evaluation

Decision

Synthesis

9

simplicity and generalization, it has shown great performance on some simple

optimization problems.

One way to partially alleviate the pitfall of being stuck in local optima is to use

multi-start hill climbing [60], which increases the probability to find the global optimum.

However, the time and cost can be tremendous compared to other search algorithms.

Therefore, hill-climbing algorithms are best suited for unimodal optimization problems.

2.4.2. Simulated annealing

Simulated annealing is inspired by the physical cooling process of metal materials.

The molten metal has to be cooled slowly and evenly to prevent from cracking.

Borrowing the same idea for optimization, simulate annealing enhances neighboring

search by allowing occasional long moves to prevent from getting stuck in the local

minima [21, 61, 63].

In the first stage of the algorithm, the parameters vary over a wide range. As the

algorithm goes on, the search space becomes smaller and the final solution is hopefully be

settled into the global optimal solution. The probability of accepting solution j from

solution i at the kth step is:

⎪
⎩

⎪
⎨

⎧

>

−
≤

=

)()(

)()(
)()(1

),(

ifjfifkc
jfif

e

ifjfif

kijp

ck is the cooling schedule and normally decreases to close to zero as simulation is going

on. Therefore, at the first stage, the algorithm basically allows any direction of search. At

the final stage, as ck is close to zero, the search will only towards the better solution. The

search result is dependent on the cooling schedule.

 Simulated Annealing sometimes is very slow, even though it has been proven to

converge to the optimal solution if the right cooling schedule is used [61]. For high

dimensional optimization problems, it often is stuck in local optimal point. A general

cooling schedule with guaranteed convergerce for all optimization problems has not been

found. Despite this, simulated annealing has been widely applied on a variety of areas,

including scheduling, and network routing according to [61, 63].

10

2.4.3. Evolutionary algorithms

 Evolutionary algorithms use biological concepts to solve optimization problems

by emulating evolutionary processes. The idea first came up as early as in the 1950s with

limited applications [28]. In the 1970s, as computing improved, it attracted more interests

from varieties of scientists and engineers.

 Evolutionary algorithms have a variety of derivations. They share the same

strategy:

 Create an initial population

 Evaluate solutions in the population

 Repeat

 Select solutions to produce offspring

 Produce new solutions by copy and variation

 Evaluated new solutions and put them into the population

 Until Done

Evolutionary algorithms first create an initial population of data structures. The data

structure can be varied depending on algorithms. For example, binary genetic algorithms

use fixed length binary numbers as their basic data structure. The data structure, which

contains certain information, is called as chromosome in genetic algorithms. Genetic

programming uses a parse tree as its data structure. It has various data length as the parse

tree is changing. Evaluation normally uses a fitness function to compare solutions and

may affect what parents are chosen to produce children for the next generation. In

producing new solutions, two variation methods, mutation and crossover, are generally

applied to combine parents’ data structures to produce children’s. Crossover exchanges

parents’ data structures so that children’s data structures share some of parents’

characteristics. Mutation changes part of the children’s data structures in order to bring

variations in the children’s data structures. The next step is to select among the parents’

children’s population and to form a new population of solutions for next iteration. The

main loop is iterated until the stop condition is met.

 Compared with simulated annealing, evolutionary algorithms use population-

based search instead of one-way search. It has more chance to skip local optimum.

What’s more, different search paths can exchange their information so as to speed up

search process. The mutation and crossover operators are much easier to set up than the

proper cooling schedule. Although evolutionary algorithms are computationally

11

expensive, it is a good geneal algorithm to solve complex optimization problem,

especially with multiple local optima.

 Evolutionary algorithms evolve over time to find the solution digitally. Each

unique solution has its own data structures containing its own information. If the data

structure is not varied between solutions, it is called fixed data structure evolutionary

algorithm. Otherwise, it is non-fixed data structure evolutionary algorithm. There are

many common used evolutionary algorithms, including genetic algorithm, finite state

machines, and genetic programming. Each of them has wide applications covering

different areas [41, 44].

2.4.4. Genetic Algorithm

One of the most common evolutionary algorithms is the genetic algorithm.

Genetic algorithms are based on the mechanism of natural selection. They follow the

standard iteration steps as evolutionary algorithms. They use binary or floating genes to

represent design variables with fixed length. At each iteration, they use pairs of two genes

with high fitness to generate new genes by crossover and mutation. The next population is

selected in parent and children genes according to fitness.

When genetic algorithm first came up in the late 1970s, it used binary gene

representation in most cases. Genes are defined, in biology, as a sequence of DNA that

represents certain characteristics. The 1 and 0 sequence in the GA gene represents a

unique solution. Each of binary numbers is called one chromosome of the gene as called

in biology. Mutation and Crossover are both used in Genetic algorithm. In GAs, crossover

is just exchanging genes at certain crossover point. Figure 2.2 illustrates a crossover

example with gene length being 5. The crossover position is the end of the second

chromosome. Crossover has various types. The most common ones are one-point

crossover and two-point crossover, i.e. the crossover happens at one position or two

positions respectively. Mutation flips the binary bit at certain position as shown figure

2.3. Generally it assigns a small probability rate for mutation at each position.

12

Figure 2.2 One Point Crossover Example

Figure 2.3 Mutation Example

 Selection keeps the population size stable. It inserts some of the children into the

population to replace old ones. The good solutions have large possibility to survive than

the bad solutions. The selection pressure makes solutions tend to improve along the

evolution process. Generally, there is a selection rule to compare solutions, for example, a

fitness function which is a function of optimization objectives. Solutions with high fitness

have more chance to survive in the selection process.

There are many selection methods to evolve the population that can be divided

into two categories: elite and non-elite. Elite selection methods assure that the best

individuals of the population go to the next population. Elitism favorites individuals with

the best fitness and makes them to produce more children. Some of non-elite selection

methods are roulette wheel selection and tournament selection. Roulette selection assigns

each individual gene a probability, which is in direct proportional to its fitness. The

individual with high fitness has high probability to be picked. Tournament selection

shuffles the population randomly and divides them into small groups. At each iteration,

half the population with better fitness will survive.

 Each iteration in a GA is called a generation since some individuals disappear in

the population and new individuals appear. The population size stays stable through

 Mutation

 Crossover

1 0 0 0 0 1 0 1 1 1

1 0 1 1 1 1 0 0 0 0

1 0 1 1 1 1 0 0 1 1

13

generations. The number of generation affects running time of GA and affects its ability

to locate global optimum.

 Another commonly used data representation is real-value gene. Although real

value number can be changed into the binary format, which may result in resolution lost,

real valued GAs are intuitively suitable for engineer problems. Real valued representation

keeps each design variable as a unique chromosome so that crossover does not happen in

the middle of one design variable as using binary representation. Crossover in the real

value GA is almost the same as binary GA while mutation is quite different. Real valued

GAs normally use one point mutation, i.e., only mutating one design variable each time.

The value of the chosen mutating point changes in a certain range.

2.5. Multiobjective Optimization
 As stated above, optimization problems are described as optimizing f(x) = (f1(x),

f2(x), …, fn(x)). Assuming minimization, if f(x) is a scalar value, the optimization goal is

to minimize this value. But if f(x) is a vector, i.e., it is a multiobjective optimization

problem. The optimization goal is to minimize all the objectives, fk(x), simultaneously.

If an optimization problem has only one objective to minimize, many optimization

methods can be used to minimize the objective, for example, hill-climbing and simulated

annealing mentioned above. However, if it has multiple objectives, it is sometimes not

possible to find an optimal solution with respect to all objectives. Figure 2.4 shows a two

objective optimization example that has no global optimum. Objectives f1 and f2 have a

feasible area due to limitation on inputs and function characteristics (left figure). There is

no one global optimum for this example because it is not possible to achieve minimal f1

and minimal f2 at the same time. The optimum for multiobjective problem has new

definition to deal with conflicting objectives.

If all objectives of solution A are smaller than ones of solution B, A is considered

as dominating B. For example, a vector (3, 4) dominates vector (4, 6) but does not

dominate vector (2, 10) according to domination definition above. If a solution cannot be

dominated by all other solutions, it is considered to be a Pareto optimal solution. All

Pareto optimal solutions formulate a Pareto optimal front. Figure 2.4 shows the Pareto

optimal front for the example (right figure).

In multiobjective optimization problems, any solution on the Pareto optimal front

is an optimal solution. The multiobjective optimum is the Pareto optimal front. The task is

14

changed to find the Pareto optimal front, which is normally a high dimensional area. Then

the decision which solution is the best is taken with respect to other criteria such as

robustness and cost. Human (decision maker) need to be involved in this selection

process.

Figure 2.4 Multiobjective Optimization Problem Example

To solve multiobjective optimization problems, there are many different

algorithms. Generally they can fall into three basic approaches: 1. aggregating method:

transfer the multiobjective into a single objective; 2. criteria method: optimize one

objective at one time; 3. Pareto method: Use the Pareto optimal idea to find Pareto

optimal front then select the final solution. For a multiobjective problem, if a mapping

from all objectives to a fitness function is constructed, then the multiobjective problem

are changed to single objective optimization problem. The mapping can be generally

represented as follows:

 f(x) = (f1(x), f2(x), …, fn(x)) g(x)

There are several different methods for forming multiobjective functions such as

weighted sum and fuzzy logic fitness. This single objective function can be optimized

using many optimization algorithms such as the algorithms mentioned. The disadvantage

of the approach is that it only finds one solution not the whole Pareto optimal front. Since

the solution found is directly decided by the mapping, the decision maker has to know

which direction search should go before the search. If the decision maker knows how to

trade-off all objectives, it is suitable and very efficient to use this method. For example, if

engine designers want to optimize engine’s emission and fuel economy simultaneously,

f1

f2

Design
Variable 1

Design
Variable 2

Pareto Front

15

one way to trade-off two objectives is to choose the best fuel economy with meeting

emission requirement.

 Criteria methods can only minimize one objective for each search process.

However, the idea can be borrowed to use in evolutionary algorithms. An individual with

one minimal objective is at the Pareto front. It contains some information to help EA to

locate the overall Pareto front. A practical application is to start multiple search

processes, each of which is attending to optimize one objective. Individuals among

different processes can exchange information by crossover. The interactive GA that

Parmee suggested is using such techniques.

 For some multiobjective problems, it is hard to choose a trade-off from the Pareto

optimal front. The Pareto front needs to be further explored to make the decision. In the

engineering design, typically designers have no idea what value of each objective can be

gotten through the design. For example, in designing diesel engines, there are two

emission limits: NOx and Particulate Molecular (PM) to be met. Before the design,

designers have no idea how low NOx and PM can be reached. The objective set must be

explored to find a design that can meet emission standard. In this situation, the whole

Pareto front should be found in optimization process. Population based search algorithms

are more suitable for this task.

2.5.1. Multiobjective GA

 GAs have been extensively applied to multiobjective optimization problems since

they can locate the Pareto front. Traditional GAs use a fitness function to evaluate

solutions. This is only suitable for a single objective problem. For multiobjective

problems, this method results in converging to single point on the Pareto Front. Instead of

using fitness functions, another evaluation method such as Pareto dominance, which is

able to to compare solutions for GA selection, is needed. Pareto dominance is clearly a

right choice.

 Pareto dominance is used to compare two solutions. If a solution is dominant to

the other, it is a better one. Selection favors the dominant solution and makes it produce

more children. Goldberg [46] has suggested a ranking method for population comparison.

In his formulation, at each iteration, the population is searched for nondominant solutions.

These solutions are ranked as 0 and are removed from the population. Then another set

of nondominant solutions are found in the remaining population. They are ranked as 1

16

and also removed from the population. The process is repeated until all solutions have

been ranked.

 There are some other variations of ranking methods. Goldberg’s ranking is

divided the population into many layers of Pareto front. In Multiobjective Genetic

Algorithm (MOGA) ranking method [43], each individual’s ranking is determined by the

number of individuals by which it is dominated. The global Pareto front has the same

rank 0 as in Goldberg’s method. But the rest has quite different rankings. There are many

multiobjective genetic algorithms such NPGA II [31], SPEA II [113] with variations in

selection methods and diversity control techniques.

 Any population based ranking method takes lots of computation time, especially

for a large population. But GAs need to use large population sizes to find the whole

Pareto front. Otherwise, the population will be filled with all non-dominant solutions. To

make the search more efficient, tournament selection methods can be used for

multiobjective GAs. Local dominance ranking is only needed for tournament selection.

However, tournament group size becomes an important factor to affect selection process,

which complicates its application in practical use.

2.6. Diversity
One of the major problems in evolutionary algorithms (EAs) is that simple EAs

tend to converge to local optima. If there are several local optima in a single objective

problem, EAs sometimes will be stuck in a locally optimal solution. In multiobjective

problems, the Pareto optimal front can be very large. EAs have a tendency to converge to

local areas without covering the whole optimal front space. For both single objective

optimization and multiobjective problems, diversity is important to prevent from being

trapped in local optima.

Diversity and convergence are two conflicting factors in any evolutionary

algorithms. If a high selection pressure is applied, individuals will quickly be replaced by

better fit ones and diversity will decline in a short while. If a low selection pressure is

applied, EAs will take too long to converge. Several studies have been carried out for

keeping diversity in the population while allowing rapid convergence. Bosman and

Thierens [16] state that the existing best MOGAs behave similarly or individually

preferable by different diversity metrics (performance indicator), i.e. Most of MOGAs’

17

performance is problem dependent and may perform better for some problems due to its

unique diversity metrics.

There are several techniques reported to avoid premature convergence for EAs,

such as crowding [16] and random immigrants [17]. Crowding techniques create

offspring to replace existing individuals based on their similarities [19]. Random

immigrants bring some entirely new randomly generated elements into the gene pool

[18]. But the most common one used in GAs is sharing. Sharing distributes non-dominate

genes over a number of peaks on its Optimal Pareto front. At each iteration, it calculates a

sharing fitness function, which is related to objectives and how crowded of neighborhood,

for each individual and picks only a fraction of the population around each peak in

proportion to height of the peak.

 Sharing can be performed in objective space or decision parameter space (input

space). As from the Pareto dominance definition, the Pareto front is defined in objective

space. Designers like to see the Pareto front well distributed so that they can choose a

good solution meeting their requirements. However, from a GA’ stand point, diversity in

the input space is important. If the population is filled with a lot of similar solutions, it

has a strong tendency to be trapped in a local optimum. Input space diversity affects

objective space diversity, but the opposite is not sufficient. Horn [53, 54] has suggested a

sharing technique that combine both spaces called nested sharing. But the way to balance

two diversity requirements still lacks general procedures.

The current state-of-the-art evolutionary algorithms in multiobjective evolutionary

optimization which include the Nondominant Sorting Genetic Algorithm II(NSGA-II) by

Deb et al. [30], the Strength Pareto Evolutionary Algorithm(SPEA) by Zitzler and Thiele

[114], the SPEA-II by Zitzler et al. [113], the Pareto Archived Evolution Strategy (PAES)

by Knowles and Corne [55], have presented different ways to handle diversity. The basic

idea to keep dominant solutions spreading out is all the same, but each algorithm uses

different selection and elitism approaches. They are considered as “a Pareto set of

MOEAs” because each of them has been proved to have good performance on certain

problems.

2.6.1 Niched sharing example

 A niche represents a competition for limited resources. In multiobjective GA,

population size is fixed and it is outnumbered by feasible solutions in the Pareto front. To

18

make sure the final population covers the Pareto front uniformly, niching has to be

applied to maintain high quality diversity.

 MOGA [46] has one of the most common used niching sharing scheme. It is a

fitness sharing method, which degrades the fitness according to the number of similar (in

input space sense) individuals. Each individual i has its objective fitness fi = f(i) that is

calculated from its Pareto ranking. Designers need to define a sharing distance shareσ . It is

a fixed radius threshold for similarity. If two individuals i, j have larger distance d(i,j)

than shareσ , they won’t affect their sharing fitness each other. A sharing value is defined

as:

⎪⎩

⎪
⎨
⎧ <−

=
otherwise

jidjid
jidsh share

k

share
0

),()),((1)),((σ
σ

where k is a real number determining sharing function shape and is often set to one.

For an individual i, its niche count mi is the sum of its neighboring sharing values:

∑
=

=
N

j
i jidshm

1
)),((

where N is the size of the population. The adjusted fitness (shared fitness) of an

individual i is then given by

i

i
sh m

fif =)(

 shareσ is a very important factor in above niche sharing scheme. It not only affects

each individual’s shared fitness, but also affects diversity around the Pareto front.

Choosing an appropriate shareσ is an optimization problem itself, which makes it hard to

apply for general multiobjective optimization.

2.7. Uncertainty
Real world problems always involve uncertainty. It may come from modeling

uncertainty and parameter estimation. For example, in designing a vehicle, the weight of

vehicle varies in different conditions, such as fully loaded and half loaded. It will bring

uncertainty for vehicle modeling. Optimizing vehicle design has to be done across all the

conditions. If a design variable has a linear relationship with objectives, optimization can

19

be done in its extreme conditions. But if the relationship is nonlinear, it is hard to estimate

at what point the variable affects objectives most.

There are two categories of uncertainty problem in evolution algorithm:

1. Two successive evaluations of one chromosome return two different sets of objectives.

2. Two successive evaluations of one chromosome return the same set of objectives. But

the objectives of any chromosome are not accurate and can be varied in a certain range.

The first category means that objectives have certain disturbance and have a probability

distribution at a certain range. Normally, these uncertainty problems are dealed with by

using objective’s mean and variance. The second category means chromosomes have

certain disturbance, which results in disturbance in objective functions.

In engineering design problems, the first case seldom happens. Because when one

combination of design variables is selected, one physical system is determined and

system outputs are fixed as well. Only if a system has random signal source, for example,

one of control variables has a probability distribution, then the system has different

responses for the same design. Most engineering problems fall into the second case. If the

system are not modeled accurately or any design parameter is estimated, inaccuracy will

happen in calculating objectives, which results in drift in objectives.

This kind of uncertainty makes it difficulty to compare two sets of objectives in

evolutionary algorithms. Comparisons show that one set of objectives dominates another

one, but actually it may not better. Several studies have been carried out with comparing

two uncertain fitness measurements [47, 48]. Objective measurements are treated as

values with distribution probability. The most common distributions such as uniform and

normal distribution have been studied. The difficult thing is to know the exact

distributions of uncertainty.

In Jin’s survey [50], uncertainties are categorized into four areas: noise,

robustness, fitness approximation, time-variant fitness functions. In Engineering design

problems, the second area - robustness is the essential problem we care about. Only a few

studies have been done to study robustness in multiobjective optimization. Deb [27]

suggested that robustness can be achieved by optimizing mean effective fitness function,

which is the average of a set of neighboring solutions. This method will significantly

increase computation times due to calculating neighboring objective functions, which

requires running a lot of additional simulation in dynamical modeling and is very time

consuming. Ray [92] suggested adding robustness to objective functions and it samples a

20

set of neighboring solutions to get the mean and standard deviation, which are added into

objective functions. This method still uses fitness concept and make it difficult to apply to

multiobjective optimization problems. Some other research areas dealing with uncertainty

such as approximate fitness function and dynamic optimization are targeted to dynamic

fitness function (time variant) problems, which is not the focus of this dissertation.

 Robust design means system meets requirement in worst case (disturbance).

Robustness is sometimes conflicting with optimization. To meet consumers’ need,

designers want to achieve the highest possible optimum with meeting robustness

requirement. Little research has been conducted to study robust engineering design

problems using GA. GAs are thought to be capable of finding the robust designs. But this

is arguable because diversity techniques affect GA converging to robust areas. Moreover,

the robust areas GA found are not always able to meet designers’ requirement.

2.8 Genetic Algorithms in Engineering Design
 One of the popular heuristic search algorithms is genetic algorithm. GA not only

has all heuristic algorithm’s characteristics, but also is a multi-directioned search method.

It originally is designed for single objective optimization problem since it uses a fitness to

do evaluation. As GAs are applied to multiobjective optimization, the fitness concept has

been extended to dominance rank, which is created for searching the Pareto Front. Since

then, GAs begin to become popular in multiobjective optimization areas, especially in

finding the Pareto Front.

 GAs use dominance rank to push the population close to the Pareto Front and it

has been proved to be an effective way to explore the Pareto Front. One of the difficulties

in exploring the Pareto Front is the curse of dimension. As dimension of the problem

increases, the Pareto Front becomes very complicated. GAs tend to be stuck in some local

Pareto Front areas. To make the optimal solutions well covering the Pareto Front and

quickly converting to the optimum is what most of research on GAs are focusing on. How

to balance proximity and diversity in exploration is a multiobjective optimization problem

itself.

 There are many studies on diversity preservation, diversity estimation, and metric

comparison to improve the population diversity. Many different GAs have been presented

to improve diversity and convergence such as RAND, FFGA, NPGA, HLGA, VEGA,

NSGA listed in Ziltzler’s paper. There are new research ideas such as co-evolutionary

21

GAs and Clustered Oriented GAs. No matter what GAs are, they are trying to make the

search converge to the Pareto Front (or close to the Pareto Front) as quick as possible and

make the population cover the Pareto Front (or close to the Pareto Front) as even as

possible at the least computation time. Since these goals are conflicting themselves, we

often find out that any GA is a tradeoff of these goals and it may perform well on some

certain problems but bad on others.

 Chapter 4 suggests a new Genetic Algorithm – Complete Dominant GA. It

loosens the dominance concept and allows a tolerance in comparing two solutions. Its

idea is very simple and can be easily combined with any existing GAs. The advantage is

its simplicity doesn’t require any additional computation but preserve diversity in some

degree and converge to the Pareto Front very well. The most important characteristic is

that it can be easily to use in searching for robustness.

2.8.1. Engineering design using GAs

 Since GAs have shown excellent performance in optimization problems,

especially in multiobjective optimization, engineering design optimization problems have

been explored with GAs. Engineering design optimization problems normally are multi-

objective problems with high dimensional design variables. They also are complicated in

that system dynamics are always non-linear and with uncertainty. In addition, engineering

design problems often have constraints on design variables. All these issues have been

well addressed in different GAs.

 As engineering design becomes more and more complex in modern industry,

computer modeling is one of the essential method to achieve reducing design cycle and

improve design quality. Genetic algorithms have been used in a lot of complex design

problems. There have been a number of activities from developing GA software for

engineering design to improving GAs for engineering design.

2.8.2 Robustness in engineering design

 Robustness is key to designing products that work in a range of condictions. From

this aspect, robustness is sometimes in higher priority than optimuality. Engineering

design has to deal with uncertain environment, manufacturing tolerance and un-modeled

effects. Real industry problems have shown that uncertainty can result in failure in the

field.

22

 Previous researches focused on uncertain objective function problems, i.e.,

objective functions will return different values with the same design inputs. The

techniques used for these problems are to estimate distribution of objective functions.

These methods have been used to apply to mathematical problems to deal with

uncertainty. However, this method is limited in that engineering design has to deal with

uncertain design variables, especially curves. Few researches are oriented for this area at

present.

 Chapter 4 proposes a new Complete Dominant Genetic Algorithm to help solve

robustness problem in engineering design. It is an innovative way to explore robustness

problem. CDGA will push the GA search to high performance region instead of the

Pareto Front, so robustness of each solution in high performance region can be explored

by the help of clustering algorithm. Chapter 5 uses sevearal multiobjective problems to

present the whole idea and show the robust solution it has found. Further discussion on

diversity and robustness is provided in details as well.

23

CHAPTER 3. HIGH DIMENSIONAL SYSTEM DESIGN
USING GENETIC ALGORITHMS & VISUALIZATION

Published in 2003 American Control Conference

Xiaopeng Fang1, Brian Kellogg2, Tye Conlan2, Julie Dickerson1, Di Cook3

1Department of Electrical Engineering
Iowa State University, Ames IA 50010

2JohnDeere Corporation, Dubuque IA 52001
3Department of Statistics, Iowa State University, Ames, IA 50010

Abstract

This paper uses genetic algorithms (GA) to explore and optimize a high

dimensional multiobjective system for brake control. The design goal is to make a

hydraulic brake system efficient and comfortable for a variety of vehicles. High

dimensional visualization has been used to visualize the design space and design the

fitness function. The effectiveness of methods is demonstrated by the brake design

example.

Keywords: genetic algorithm; data visualization; high dimensional optimization;

dynamical modeling;

Introduction

Dynamical modeling provides engineers an accurate way to simulate dynamics of

complicated systems. The design process often includes design, evaluate, and redesign

cycles. It can require many repetitions to select a design that performs well under many

conditions and is feasible to be built. This problem is particularly acute for hydraulic

systems. Valve performance is often specified using area curves that mathematically

define an ideal transfer function between the valve input and output flow. In practice,

these curves cannot be achieved exactly and tolerances must be estimated. The designer

must also be sure that the control space has been explored thoroughly for different input

conditions to ensure that there are no regions of unexpected behavior. Intelligent and

efficient methods to help discover the optimal design and reduce design time are needed.

24

Evolutionary algorithms have been shown to be robust and efficient in finding the

global minimum (1). Genetic algorithms have been applied to many real-world

multiobjective problems including control engineering design (10), industrial design (11),

and transportation planning (12).

Genetic algorithms normally decide a design whether good or not based on a

fitness function. In practical design problems, there are often several objectives to be

satisfied. Normally, there is no complete optimal solution to minimize or maximize all the

objectives. Instead, people try to find Pareto optimal solutions, a set of solutions that

cannot improve any objective function without sacrificing at least one of the other

objective functions (6), and use their own expert knowledge and experience to choose.

It is difficult to select a suitable fitness function to guide the genetic algorithm.

There is often no analytical method available to explore the input and output space

besides looking at simulation results. High dimensional data visualization methods such

as parallel coordinate plots, tours, and linked plots, available in statistical packages for

example GGobi, can assist in examining the space (8). Designers are able to pick a good

solution from the Pareto space with the help of data visualization.

The system structure is shown in figure 1. Engineers build complicated dynamics

models for their problems of interest using a dynamical modeling tool such as EASY5

(13) and Simulink (14). A database is used to store and manage simulation results. GA

tools with user interface support are connected with the simulation model and database

directly. Database, GA tools, and visualization are all independent from the simulation

and can be coupled with other modeling software. Decision-makers use the GA and

visualization to explore the design space and choose the optimal solution. A hydraulic

system design project has been used to test the whole system.

25

Figure 1. System structure

Background

This project uses genetic algorithms to assist design engineers in finding optimal

designs for a hydraulic brake model. The hydraulic brake design project studies what

combinations of inputs (such as supply pressure and area curves) result in a comfortable

and efficient brake system that works on a variety of machine models. For this goal,

desired response of the brake system has its max deceleration smaller than 0.2~0.3g, its

max jerk smaller than 1g/s (9), and its velocity change because of deceleration as large as

possible. System diagram is shown in figure 2.

The brake system model is shown in figure 3. Brake valve area tables coupled

with pressure drop across the valve control the flow rate through the brake valve. The

brake valve has two spools. Each spool has its own two area tables (in/out brake) and

control flow and pressure to either the front and rear axle. The brake valve feedback

orifice for each spool controls the brake valve’s response to pressure in the brakes. The

supply pressure specifies the system inlet pressure to the accumulators and the brake

valves.

Genetic Algorithms

Genetics algorithms are optimization techniques inspired from evolution. Based

on the survival of the fittest strategy, GAs exploit the best solution and explore the search

Input Space Simulation Output
Space

4 vehicle
simulatio
n
programs
with the
brake

Max
deceleratio
n and jerk

Velocity
change

4 spool
area
curves
2
feedback
orifices

Visualizati

Decisio
n
Maker

GA

Database
of inputs
and

Simulatio

26

space through genetic operators: selection, mutation, and crossover (3)(4). They have

been successfully applied to the optimization area (5).

The genetic algorithm used in this work uses floating point representation, since

floating point representation is more suitable for multidimensional, high-precision

numerical problems (5). The genetic operators and parameters for the brake system are

shown in table 1.

GA type Floating point
Initial Population 16
Mutation Non-uniform
Crossover One point
Selection Tournament
Termination 40 generations
Table 1. Genetic operators and parameters

Gene:

There are four spool area curves (SP1P2B, SP1B2T, SP2P2B, and SP2B2T) for

the hydraulic Brake model, each of which controls the flow rate through the brake valve.

Each area curve is represented by one scalar factor. The other design variables are the size

of the two orifices in millimeters and the supply pressure in kPa. Each individual has a

gene with seven variables. Each variable is a real value number representing the scalar of

the original area curve or the actual value for orifice and pressure. For example, the gene

(3.5 2 1 3.5 1 1.5 4900) means the first area curve (SP1P2B) is 250% larger than the

original SP1P2B curve (as in figure 4) and 100%, 0%, 250% larger for other area curves

respectively. The first orifice size is 1.0 mm, and the second one is 1.5 mm. The supply

pressure is 4900 kPa.

27

Figure 4. Scalar of original areacurve

Crossover:

The crossover operator uses the traditional one point crossover method (5). This

method randomly picks a position then interchanges two parents’ genes. For instance, if

the position two is picked, assuming parents’ genes are (1.0 2.0 3.3 3.5 1 2 5000) and (3.0

2.9 1.5 1.7 2 1 7000), the children’s genes will be (1.0 2.0 1.5 1.7 2 1 7000) and (3.0 2.9

3.3 3.5 1 2 5000) after crossover.

Mutation:

 Accumulators Brake Valves
Axles/Brakes

 Spool 1

 Supply Pressure
 From Main Pump Feedback orifices

 Spool 2

Figure 3. Brake system schematic

SP1P2B Spool Areacurve

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8

spool position

flo
w

 a
re

a

SP1P2B
SP1P2B_250

Front
axle

Rear
axle

28

The mutation operator used in the project is the non-uniformly mutation method

(5). It randomly picks a variable in the gene, j, and sets it equal to non-uniformly random

number:

 xi
’ = xi + (bi - xi)*f(G) if r< 0.5,

 xi
’ = xi - (xi - ai)*f(G) if r>= 0.5,

Where

 f(G) = r2(1-G/Gmax)

r2, r1 = a uniform random number between (0,1),

 ai, bi = the low and high boundary.

 G = the current generation

Gmax = the maximum number of generations

Initialization:

The initial population is 16. Possible parameters are randomly picked from the

database of the previous simulation runs. The population size is stable at 16 for each

generation.

Selection:

The genetic algorithm uses the tournament selection method to select the next

generation. It randomly picks two individuals as parents from the current generation and

two children are generated by crossover and mutation. Each individual is evaluated by a

fitness function. Only the best two will be selected from each family. For instance, two

parents A and B have fitness 1.0 and 0.8 respectively, and two children C and D have

fitness 2.0 and 0.5 respectively. Only A and C will be selected for the next generation.

Termination:

The simulation stops when the user-defined tolerance has been met or the

maximum number of generation is reached. The tolerance is how much the average

fitness increases comparing to the last generation (0.01 in the experiment). The maximum

generation is how many generations are allowed.

Fitness function:

The fitness function for the brake model can be separated into three parts:

deceleration, jerk, and stopping ability, which is represented by the area of deceleration

29

time response. The ideal deceleration response is smaller than 0.2g, which makes the

driver feel comfortable. The ideal jerk response is as small as possible. The ideal stopping

ability is as high as possible. The final fitness is the sum of all three parts for four

different vehicles. Equations for each part are listed as follows:

)a2.0(*10f 1i −= a<0.2 g

)2.0a(*5f 1i −= Otherwise

J1*)J1(*5f 2i −−=

V*10f 3i Δ=

)fff(fitness 3i2i

4

i
1i ++= ∑

Where

 a = deceleration peak (g)

 J = jerk peak (g/s)

 ΔV = area of deceleration response (m/s)

 i = vehicle type

Simulation Results:

The simulation stops after 40 generations. The final population converges to some

certain areas of the control space. The average fitness increased from –10.21 to 2.9. As

shown in figures 5 and 6, the high fitness response has lower jerk peak by 30% and larger

area of deceleration time series curves by 14% which means that it stopped faster.

Figure 5. Comparison of responses of low fitness and high fitness

Deceleration response

-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.00 1.00 2.00 3.00 4.00

time (sec)

de
ce

le
ra

tio
n

(g
)

Low fitness
High fitness

30

Jerk response

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

0.00 1.00 2.00 3.00 4.00

tim e (sec)

Je
rk

 (g
/s

)

low f itness Jerk

jerk(high f itness)

Figure 6. Comparison of jerk responses of low fitness and high fitness

Visualization can then be used to explore the design input space by linking input

space with the fitness. By choosing a high fitness area, see in figure 7, users can examine

the combinations of input parameters that correspond to these values. The highlighted

combinations of inputs are as follows: mid-range BV1P2B and BV2P2B, low-value

BV1B2T, two orifices, and Psupply, high-value BV2B2T. Some variables such as

BV1B2T and BV2B2T have wider range choices. It suggests that they are less sensitive

than other variables. Physically it is because they are variables controlling fluid flow from

brake valves to tank, which are less important than variables controlling fluid flow from

pump to brake. Now it is also a good idea to look at the multiple outputs that constitute

the fitness value. It is common that not all the objectives can be satisfied at the same time.

The values of the objectives that correspond to overall high fitness can be displayed in

several windows (figure 8). Each window contains information of jerk and acceleration

for one vehicle type. With an optimal design gotten by GA, the first, third, and fourth

types of vehicles all have low jerks and acceptable high accelerations (highlighted

points). But vehicle two has a relatively high jerk and low acceleration. If the jerk in

vehicle model 2 is needed to reduce, other vehicle models’ performance have to be

sacrificed.

31

Figure 7. Explore input space while brushing fitness

A similar process could be used to choose good fitness functions. Several different

fitness functions could be computed, and their values could be examined in relation to the

output space. The fitness function can be chosen by matching the best fitness values with

the best values in the objective space. Design experts have some intuition in picking an

optimal space that optimizes and balances multi-objectives of physical system.

32

Figure 8. Exploring output space and visualizing multiple objectives

Conclusions and Discussions

The paper presents a general process to solve multiobjective optimization

problems, particularly engineering problems with dynamical modeling. GAs are used to

search the high dimensional space and find the optimal solution. High dimensional

visualization, such as available in GGobi, is ideal for exploring input and output space to

understand the relationship of input and output variables, understand relationship of

multiple objectives, and design the fitness function to guide GAs. With these two tools

and engineers’ expert knowledge, designers may be able to arrive at optimal solutions

33

quickly and correctly. This approach can be applied to many practical design problems

and is demonstrated here by the brake control application.

In the paper, multi-objective functions have been combined into one fitness

function using weighting coefficients. Other available approaches in multi-objective

genetic algorithms (15) (16) are to locate Pareto-optimal solutions without defining a

fitness function. It often requires extensively exploration in the input space, and thus

needs larger population size and generation iteration. Dynamical modeling needs several

minutes’ computing time or even more, depending on model complexity and time step, to

finish each individual run. The whole GA optimization process might take weeks’ time.

However, GA parallel feature may make multi-objective genetic algorithm applicable to

dynamical modeling with parallel computing technology. Future research on this area is

needed.

Acknowledgement

This project is supported by John Deere Corporation. We would like to thank

Brian Kellogg, Tye Conlan, Lary Williams and Mac Klingler of John Deere Dubuque

Works for many helpful suggestions and comments. Di Cook of Iowa State University

has guided us on the use of the GGobi statistical visualization software.

References
1. J. Bernard, J. Gruening and K. Hoffmeister, “Evalution of Vehicle/Driver

Performance Using Genetic Algorithms”, SAE 980227.

2. P. N. Koth, J.P. Evans, and D. Powell, “Interdigitation for Effective Design Space

Exploration using iSIGHT”, www.engineous.com.

3. K. C. Tan, T. H. Lee, et al., “A Multiobjective Evoluationary Algorithm Toolbox for

Computer-Aided Multiobjective Optimization”, IEEE Transactions on Systems, Man

and Cybernetics, Part B: Cybernetics, v31 n4, 2001, P537-556.

4. C. R. Houch, J. A. Joines, and M. G. Kay, “A Genetic Algorithm for Function

Optimization: A Matlab Implementation”, NCSU-IE TR 95-09, 1995.

5. Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs”,

Springer-Verlg Berlin Heidelberg 1994.

6. M. Gen and R. Cheng, “Genetic Algorithms & Engineering Optimization”, John

Wiley & Sons, Inc. 2000.

34

7. D. Quagliarella, J. Périaux, et al., “Genetic Algorithms and Evolution Strategies in

Engineering and Computer Science”, John Wiley & Sons, Inc. 1998.

8. D. F. Swayne, D. Cook et al., “GGobi manual”, www.ggobi.org.

9. R. Goudy and S. Andrews, “Brake control strategy for optimized safety and comfort”,

Proc. 5th world Congress ITS, Seoul, Korea, Oct. 1998.

10. T. K. Liu, T. Ishihara, and H. Inooka., “ Multiobjective control systems design by

genetic algorithms”, Proceedings of the 34th SICE Annual Conference, Jul 26-28

1995, Hokkaido, Jpn, P1521-1526.

11. Y. F. Yin, “Multiobjective bilevel optimization for transportation planning and

management problems” Journal of Advanced Transportation, v 36, n 1, Winter ,

2002, P93-105.

12. C. A. Coello, A. D. Christiansen, and A. H. Aguirre, “Using a new GA-based

multiobjective optimization technique for the design of robot arms”, Robotica, v 16, n

pt 4, Jul-Aug, 1998, P401-414.

13. “EASY5 User Guide”, The Boeing Company, 2000.

14. “Learning Simulink”, www.mathworks.com

15. J. Horn, N. Nafpliotis, D. E. Goldberg, “A Niched Pareto Genetic Algorithm for

Multiobjective Optimization”, Proceedings of the First IEEE Conference on

Evolutionary Computation, 1994.

16. N. Srinivas, K. Deb, “Multiobjective optimization using nondominated sorting in

genetic algorithms”, Evolutionary Computation, 2(3), 1994, P221-248

35

CHAPTER 4. COMPLETELY DOMINANT GENETIC
ALGORITHMS

4.1 Introduction

Practical physical dynamical systems are nonlinear and complex. System behavior

is difficult to fully understand using traditional mathematical analysis due to

nonlinearities and uncertainties. Designers often construct detailed dynamical models to

simulate system dynamics and try to vary several design variables to assess the system

response. For any changes in different variables, the system response needs to be checked

by running detailed simulations. This process can be quite time consuming to find a

satisfactory solution for a high dimensional problem. Moreover, a local search has to be

performed to make sure that the solution meets robustness requirement.

 Genetic Algorithms (GAs), developed by Holland [1], are inspired by natural

selection and survival of the fittest. GAs are powerful and robust stochastic search and

optimization techniques, which have been applied to many engineering and mathematical

areas such as engineering design [2, 3] and stock investment [5]. GAs can solve complex

problems that are difficult to solve with conventional techniques, such as gradient

approximation methods. In addition, they can help automate search process to find a

satisfactory design variable combination without completely understanding interactions

between input and output.

 For a single objective optimization problem, the optimum is the minimum or

maximum of the objective function. Real-world problems often have several criteria that

sometimes conflict. The optimality of multiobjective optimization is defined as Pareto

optimality [4]. Dominance is an essential concept in Pareto optimality. If a solution A is

said to dominate another solution B, it means that all of A’s objectives are better satisfied

than B’s. The set of non-dominant solutions among all possible solutions is called the

Pareto front. The goal of multiobjective optimization is to find a trade-off solution on the

Pareto front. Several techniques, such as Pareto ranking and using a weighted-sum

function, have been used to solve multiobjective problems [6-7]. Cvetkovic and Parmee

have presented several multiobjective optimization methods using in engineering

evolutionary design [18, 19].

36

There are two main directions for solving multiobjective problems using GAs: 1.

Converting multiple objectives to a single objective; 2. Using Pareto domination ideas. In

the first case, the algorithm is designed to make the population converge to a global

optimum. It may represent one point in the Pareto Front. Designers also need to map

objectives to a single fitness function. Parmee has applied the weighted sum method into

many engineering design preliminary studies [18, 23]. In the second case, the population

tends to converge to the Pareto-optimal front. The solutions on the Pareto-optimal front

are non-dominated. One of problems using Pareto dominant selection is that non-

dominant solutions will increase dramatically as process goes on. Without diversity

control, population will often be trapped into local Pareto fronts. Therefore, several GAs,

such as Reduced Pareto Set GA [8], Diversity Control Oriented GA [11], keep the

diversity of the population well distributed to cover the whole Pareto front space.

Crowding and Niche sharing have been used to keep diversity in the population [26].

Parmee has proposed Cluster Oriented GA (COGA) to help engineer do

preliminary study [24, 25]. The basic idea is to help GAs converge to high performance

(HP) areas quickly, which is defined as an area close to the Pareto front. The high

performance clusters can help design engineer further understand system such as input

and output interactions and design variables sensitivity. COGA uses a variable mutation

rate to allow diversity in the final stage so that it can formulate high performance clusters.

In order to prevent low fitness solutions from falling into clusters, filters have to be used

in evolutionary process. Filters’ functionality is to use a threshold to manage clusters.

COGA has been used in many real engineer design problems [24, 25].

 COGA’s high performance concept is exceedingly practical in engineering study.

Engineering design needs to consider many other side factors, such as cost and

robustness. A quick way to identify HP areas is helpful to further investigate designs with

other factors in mind. COGA uses adaptive filters to direct evolution to HP area. The way

to calculate threshold for adaptive filters has many variations and is problem dependent.

Adaptive filters still use the fitness idea, which limits its ability in solving multiobjective

problems.

 This paper proposes a new genetic algorithm method called Completely Dominant

Genetic Algorithm to achieve convergence to HP areas. It is intuitive to multiobjective

domain because it is based on objective space without mapping them to single fitness

function. It relaxes the dominance condition in selection process to allow the genetic

37

algorithm to explore high performance areas and help to find the robust solution. Detailed

description and discussion are presented in the following sections.

4.2 Mathematical Preliminaries
This section gives the mathematical formulation for multiobjective optimization

problems and necessary definitions that are used in this paper.

Multiobjective Optimization Problem:Vector X∈x where X is a subspace of Rn,

objective function))x(,),x(),x(((x) kfff K21=f ∈ Rk. The goal is to minimize

function (x)f , i.e. minimize all)x(kf functions, with X∈x . For multiobjective problems,

k and n are larger than 1. Each)(xif is assumed to be a continuous function.

Robust design: A robust system satisfies the objective specifications for all perturbed

cases about the original model up to the worst-case perturbation [12].

Pareto Dominance: For two vectors A=],...,,[naaa 21 , B=],...,,[nbbb 21 in Rn space, if ∀ i,

ii ba < , then A is Pareto dominant to B [9].

Complete Pareto Dominance: For two vector A, B in Rn space, given a positive tolerance

value ε, let vector C =),,,(εεε K , a hypercube in n dimension. If A is Pareto dominant to

B – C (+ for maximization), we call A is completely dominant to B with respect to ε.

4.2.1 Description

Figures 1 (a) and (b) illustrate a two dimensional (x1, x2) optimization problem

with two objectives (f1, f2). Figure 1a shows two possible solutions, A and B, which are

close to the Pareto-optimal front [12]. They are non-dominant with respect to each other.

Assuming that, decision-makers have to make a choice between two with robust

consideration. In this case, the corresponding input space of solution B has a larger space

than the space of the solution A given the same tolerance (Figure 1b), i.e. the solution B

has larger tolerance for uncertainties than A does. Therefore, the solution B is considered

more robust than A.

38

The ideal design procedure is to first pick a HP space, which is close to the Pareto

optimal front, and then pick several good solutions from this space and evaluate them

with respect to robustness. The key step is locating the HP space. Robustness can be

checked by local search in HP space. Our idea is to relax selection pressure in some

degree to allow diversity in population and also push the evolution process going to the

Pareto Front space.

Figure 2 Fuzzy fitness function

a) Objective space of the example for
solutions A and B

b) Input space of the example for
solutions A and B.

x2

B

 A

μ

1

0

 fs fu f

f2

 A

 B

39

Figure 4 HP space using Complete Pareto

 Domination Figure 3 HP space using the fuzzy fitness function

 There are two possible selection methods that meet the requirements: fuzzy

objective functions and complete Pareto domination. The fuzzy function is a mapping

from an objective function to a satisfaction function. fu represents an unsatisfied value for

a particular objective, while fs is the satisfied value (Figure 2). The goal is to minimize all

objectives so as to maximize the minimum membership function for all objectives. In

figure 3, the input space between f1s and f2s is considered to contain satisfactory solutions.

Adding some fuzzy penalty terms, i.e. p=Σwjfj, can reduce the size of the subspace, as

shown by the shaded area in Figure 3. From the genetic algorithm viewpoint, all of the

populations in the shaded area have the same fitness. An elite pool is used to store all the

individuals falling into this area, which is considered as HP region, and individuals with

the same fitness are selected with equal probability.

 Using fuzzy logic allows the GA solutions to converge to the satisfied objective

areas. However, the search space expands as problem dimensionality increases. The ideal

objective space includes all areas close to the Pareto-optimal front. Using the completely

dominant concept ensures that the solution can converge to these areas. If A is not

completely dominant to B, the solutions are considered the same. The consequence of

this selection is that all the values in the shaded area of Figure 4 are considered as HP

area.

f2

f2

 f2s

Pareto-optimal front

40

The elite pool generated by the modified GA contains all the individuals with

objectives in the HP space. Further local search and exploration in HP area can determine

solution’s robustness and other features.

4.3 Engineering Multiobjective Optimization
A lot of researches have been conducted to develop multiobjective optimization

methods. Genetic algorithms are one of appearing algorithms in Pareto optimization.

Engineering design encounters numerous multiobjective optimization problems in the

process of designing products. Multiobjective Genetic algorithms have been applied to

many engineering design areas [11, 30].

Engineering multiobjective design problems have their own characteristics that

differ from general multiobjective optimization problems. First of all, complex system

design is not a simple straightforward problem. Design variables and objectives are not

well defined sometimes in preliminary design stage. Parmee has suggested using Cluster-

Orient GA to locate High Performance areas for preliminary design. Designers have more

interests in exploring High Performance areas and find interactions between design

variables and objectives than finding optimal solutions in this stage. Designers want to

explore interactions of design variables and objectives and sensitivity of design variables.

Therefore, multiobjective optimization is desired to explore search space well especially

in High Performance areas.

 Second, engineering design problems have critical concerns on robustness. Due to

manufacturing tolerance and volatile working environment, there are a lot of uncertain

factors affecting complex system. Design variables could have disturbance and objectives

could be not calculated accurately. For engineering design, most of designs are done on

the computer by simulation models. Design engineers have to make sure the final product

meet robustness requirement in simulation phase. It requires that multiobjective

optimization has to consider robustness besides optimization.

 Diversity and robustness of multiobjective optimization results are two basic

concerns to engineering design multiobjective optimization. To apply GA in

multiobjective algorithm, GAs have to consider these two factors in order to meet

optimization goal. Previous researches have proposed various types of ideas to preserve

population diversity in evolutionary process and find the most robust solutions. This

41

chapter will review previous research results and discuss completely dominant GA’s

performance on diversity and robustness.

4.3.1 Diversity

One of multiobjective genetic algorithm optimization difficulties is keeping

diversity of population. The Pareto Front is a hyperplane in the same dimension of

number of objectives. As dimensions increase, the non-dominated solutions in the

population will increase exponentially. However, most of genetic algorithms are keeping

population size stable, i.e. consistent number of children will be produced for each

generation. Non-dominated solutions will quickly take control of the population. Without

diversity control, non-dominated solutions possibly only cover a small part of the Pareto

front.

 General requirements for a good multiobjective genetic algorithm are as follows:

1. directing the population towards the Pareto Front; 2. maintaining the diverse non-

dominated set; 3. preventing from losing non-dominant solutions. These three

requirements are also representing the developing history of multiobjective algorithms. At

the first stage, multiobjective genetic algorithms are using fitness assignment to find the

Pareto Front. Pareto ranking is the primary technique for multiobjective optimization. At

the second stage, more and more researchers realized the importance of diversity in

multiobjective optimization. Among numerous diversity techniques, niche sharing is the

most popular one that many multiobjective genetic algorithms use. Elitist selection is

added into multiobjective optimization at the third stage.

 Multiobjective Genetic Algorithm’s performance can be measured by two criteria:

convergence and diversity. Convergence test is measuring how close non-dominated

population is approaching the Pareto Front. Diversity test is measuring how non-

dominated set distributes compared with uniformly distribution. As Deb [27] proposed,

these two criteria can be measured by two metrics. The convergence metric is defined as γ

metric. It is assuming the Pareto Front is known. N uniformly distributed points from the

Pareto Front are picked. For each point, the smallest Euclidean distance to GA population

is found. The sum of all distances is the γ metric. Even if every non-dominant point is

located on the Pareto Front, the metric is not zero. Only if when non-dominant points are

uniformly distributed on the Pareto Front, the metric will be zero. It can measure diversity

along the Pareto Front in some degree.

42

 Diversity Δ metric is defined as the following:

() dNDD

ddDD

lf

N

ilf

*1

1

1

−++

−++
=Δ

∑
−

This metric is best to apply to two-objective Pareto Front. Df and Dl are the minimum

distance of non-dominant sets to two extreme points on the Pareto Front. All N non-

dominant points are sorted continuously along the Pareto Front. d is the average distance

of N-1 consecutive distance of non-dominant points. When the distribution is exactly

uniform, the numerator will be zero. In other cases, the metric is always positive and can

be over one. Small Δ metric value normally represents that distribution is close to uniform.

4.3.2 Robustness

Except convergence and diversity, robustness is also an important factor deciding

the performance of GA. For engineering design, there always are uncertainties due to

manufacturing tolerance and uncertain operating environment. Design variables may have

variations in reality to some extent, while they are fixed in modeling. Any variations may

affect system performance (objectives). Robustness can be viewed as sensitivity of

variables around optimal areas. Considering two sets of design (Figure 5), design A and B

have the same optimality, but design A is less sensitive to design variable. Clearly,

designer wants to pick the design A due to its robustness.

43

Optimality and Robustness

0

0.4

0.8

1.2

0.3 0.4 0.5 0.6 0.7

Design Variable

O
bj

ec
tiv

e

Design A
Design B

Figure 5 Example of Optimality vs. Robustness

Previous approaches to deal with noise and uncertainty in GAs include using

perturbed objective functions [9], averaging objectives or modeling uncertainty as a

Gaussian noise [10]. Uncertainties for GA can be characterized into two categories. 1.

The same design combination can have different objectives because of uncertain

objective functions; 2. The same design combination has the same objectives, but design

variables have variations. In Anderson’s dissertation, three approaches to deal with

robustness in Hydraulic system design have been explored. The first method is to use

disturbing design variables. If some design variables have disturbance, objectives or

characteristics of system are affected correspondingly. The idea is generating the actual

value of design variable based on the distribution for each evaluation. That means for the

same design combination, due to disturbance of one design variable, it has to be

reevaluated in future generations and can get different objective values.

 The second method is to use design of experiment described in Anderson’s paper.

The basic idea is using regression analysis to find out the polynomial function between

objectives and controlled factors and uncontrolled factors. The influence of controlled

factors and uncontrolled factors can be estimated through evaluation of objective

disturbance. This approach is taken after optimization process. It is actually a post-

exploration of optimum. It won’t help optimization algorithm to locate robust optimal

areas in search progress.

44

The third method is called metamodel. It uses a second order polynomial without

cross term to model objective function in terms of design variables. By studying

coefficients of the polynomial, the robustness for each solution can be estimated. It can

give a whole picture of interaction between design variables and objectives. The

disadvantage is that fitting for the second polynomial function is hard for high

dimensional nonlinear system and estimation could be far away the actual system.

 In the dynamical modeling design problem, uncertainty characteristics are often

unknown since they may come from modeling inaccuracies and/or manufacturing

tolerances. Until the actual product is produced, changes in manufacturing and the

difference between the actual product and the dynamical model are unknown. If using the

distribution approach, it applies that the actual product still has possibility to fail to meet

requirement, even though the possibility can be very small. Any product failure could

bring financial suffer and damage to company’s reputation. In engineering design area,

any worst perturbation has to be respectably considered.

 For most of engineering design problems, robustness is the first priority over

optimality. Designers are willing to sacrifice certain degree optimality to achieve system

robustness over perturbation. Transferring to multiobjective optimization problems, it is

equal to allow that the final solution is not exactly on the Pareto Front in order to meet

robustness requirement. It is hard to make quantitative decision about how much

optimality will be sacrificed and how robust is needed to achieve. Measurement for

robustness has to been established for robustness comparison.

 A robust system satisfies the objective specifications for all perturbed cases about

the original model up to the worst-case perturbation [12]. This concept is borrowing from

control system design. There are many similarities between controller design and

engineer design. The measure of robustness is defined as follows: Given a tolerance ε for

objectives, the robustness is measured by the biggest perturbation δ allowed. Given a

positive ε, max <−+ |)f(x))Δf(x(| na ε, for any nΔ and ∈a (-δ, δ), vector X∈x . Δn is a

vector in Rn space and its H∞ norm [12] is less than 1. The measure of robustness is

determined by the original state x, i.e. design variables, and the given tolerance ε.

45

4.3.3 Clustering for robustness

From the definition of robustness, the measure of robustness is determined by δ.

In reality, δ is not easy to be found accurately. One of the common ways is using local

search to find robustness. The idea is to explore the neighboring area in the input space of

a solution and find its minimum distance to over the tolerance. Local search is very time-

consuming, because it has to be performed on each good solution. For high dimension

engineering design problems, numerous solutions exist in High Performance area. If each

solution needs a local search, it is going to take tremendous time, considering that each

neighboring combination requires a simulation to get results for engineering design.

 The alternative way to compare robustness is to estimate robustness metric based

on the existing solutions without additional simulations. It is based on the assumption that

existing solutions have the same robustness characteristic as all solutions. Clearly, this

way is much easier due to no additional simulation. It generally transfers robustness

issues to a clustering problem. If a cluster with the largest size is found in existing

solutions with respect to a tolerance, the cluster center will be considered as the most

robust solutions. It is a simple search problem comparing with calculating robustness

metric for every solution.

 Even for complex multiobjective optimization problems, the clustering method is

not going to take too long to process, because design engineers are only interested in

solutions in High Performance area. The clustering is only needed to be performed for

those solutions. The general clustering procedure is as follows:

1. Find the Pareto Front of all solutions

No matter what Heuristic optimization search techniques are using, a lot of

simulation results will be generated. Among them, non-dominant solutions form

the Pareto Front. This may be different from the actual Pareto Front. However,

simulation results in this set have to be considered as the optimum solutions, since

they are the best solution found.

2. Find the High Performance area

The high Performance area concept comes from Clustering Orient Genetic

Algorithm (COGA). It is particularly useful for Engineering Preliminary study. Its

original definition is to use a filter to put high performance solutions into

populations during genetic algorithm process. In COGA, HP area is defined as an

46

area close to the Pareto front. Given a vector with the same dimension as

objectives, each value in the vector is the tolerance for that dimension’s objective,

and the tolerance for each dimension can be different with each other. The

objectives of all can be scaled in each dimension so that the tolerance for each

objective is the same. However, design engineers are more interested in

robustness in design space. The scaling should be done in the input space based on

robustness requirement. For example, the disturbance distance for design variable

A is 0.1 and distance for B is 0.2. The design variable A should scale 2 times to

get the same disturbance as B. In this way, the largest hypercube cluster that can

be found is the most robust area. If a design variable has no disturbance, it will not

be considered in hypercube.

3. Reduce solutions outside of HP area

The way to finding clusters is to check all clusters formed by every solution as a

cluster center. In the actual coding, every solution has to search all solutions to

find its maximum distance in given by certain tolerance vector. Solutions in

objective space that are too far away from HP area are not necessarily needed to

consider because their distance to solutions in HP exceed tolerance vector.

Therefore, solutions that are two times tolerance distance away from the Pareto

Front do not need to be included in cluster searching. This will reduce a lot of

unnecessary searches during the searching process.

4. Search the biggest cluster for each solution in HP area

After reducing solutions outside of HP areas, searching cluster process will be

much more improved. The goal is to find the cluster size for each solution based

on tolerance. The search process is that for each solution, finding the biggest

hypercube in which all solutions’ objectives are in the tolerance range of the

solution. The cluster metric is defined as the maximum distance to the centroid for

any point in the cluster. The distance metric is using L1-norm metric.

5. Compare cluster size

When clusters for all solutions in HP area have been found, the most robust

cluster is needed to be picked from them. There are two ways to compare clusters:

47

by cluster size and by number of solutions. Experiments show that these two

methods often match each other. When two methods don’t match, one of possible

reason is that GA doesn’t cover the Pareto Front very well. This results in that an

uncrowded area possibly has a bigger cluster size just due to fewer solutions in

this area. Using the second method increases the confidence level on robustness.

Because even though solutions in HP are not evenly distributed, the cluster has

been checked with the most number of solutions. The cluster size found by this

method is most likely able to be guaranteed to match with the actual one.

Pseudo code for clustering:

1) Loading Data

2) Finding the dominant objectives

FOR i=1 to data row size

 FOR j=i+1 to data row size

 Compare objectives[i] with objectives[j]

 END FOR

IF objectives[i] is NOT dominant by any other objective set

 Objectives[i] belong to the dominant set

End IF

END FOR

3) Finding the High Performance Area and NON-HP area

FOR i=1 to data row size

 FOR all dominant data sets

 Compare objectives[i] with objectives[j]

IF objectives[i] is within tolerance distance to any dominant data set

 Objectives[i] belong to the High Performance set

 BREAK

End IF

 END FOR

END FOR

4) Finding the largest cluster

FOR i=1 to High Performance Area data size

 FOR j=1 to NON-HP data size

 Compare objectives[i] with objectives[j]

48

IF objectives[i] is within tolerance distance to any dominant data set

 Objectives[i] belong to the High Performance set

 BREAK

End IF

 END FOR

END FOR

 FOR all data sets in High Performance Area

 Find the size of cluster

 END FOR

Example

To minimize two objective functions f when]65.00[,,,, 54321 ∈xxxxx

1 1 2 1 3 3 4 4 5 5| () () 1| 1 () * * *f g x g x g x x x x x x x= + − + − + + +

)(*)(112 xgxgf =

where

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤≤−
<<+

≤
=

65040302
4020230

202

...*
../.

.*
)(

xwhenx
xwhenx

xwhenx
xg

Characteristics of Example Problem

The example is a simple two objective optimization problem with five parameters.

Variables x2, x3, x4, x5 only affect the objective function, f1. In order to minimize f1, g(x2)

should be equal to 1-g(x1) and x3, x4, x5 should be zeros. The Pareto front is easy to

calculate and is shown in Figure 6a. g(x) is a continuous, nonlinear function. It is

designed such that it is less sensitive in the 0.2 to 0.4 range. Therefore, the objective

function is robust when x1 and x2 ∈ [0.2 0.4] (Figure 6).

49

Figure 6a robust area and Pareto-front optimum Figure 6b robust design in input

space

This example has a very simple Pareto front and has a clear robust design area. If

robustness is the priority of the optimization problem, the optimum could be sacrificed a

little to achieve robustness. Assume the shaded area in objective space is acceptable to

designers. Our question is that if we can use genetic algorithm to find not only Pareto-

optimal front, but also detect this robust area.

In this section, several genetic algorithms with Pareto fitness function have been

applied to this problem. The only difference between them is how they assign fitness and

select the next generation. The genetic operators and parameters are listed in table 1. The

non-uniform mutation method selects one variable randomly and sets it equal to a

uniform random number generated from a range decreasing with generation [14, 16]. A

clustering algorithm is used to find the robust design in GA results. The robust design has

the most neighborhood points around it. The objective functions of any its neighborhood

points are within the tolerance of objectives of the robust design point. The tolerance used

is [0.5 0.5] for two objectives respectively.

Table 1 Genetic operators and parameters
GA type Floating point
Initial Population 64
Mutation Non-uniform
Crossover One point
Selection Tournament
Termination 50 generations

Objective
space

0
0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1 1.2
f1

f2

Pareto front

robust area

x2

0.4

0.2

50

(1) Pareto Multiobjective Optimization

 The selection for the Pareto multiobjective GAs is the Pareto dominance. If gene

A dominates another gene B, A’s fitness is high than B’s. Figure 7 shows only the Pareto

multiobjective GA results that fall into the accepted area. The most robust point found by

the clustering algorithm is [0.015 0.616 0.147 0.0641 0.063]. It is not in the theoretical

robust area, since x1 and x2 do not fall into the [0.2 0.4] range. The Pareto genetic

algorithm doesn’t use diversity technique such as crowding and sharing. The reason for

this is to compare with the completely dominant Pareto GA for the same conditions.

These techniques prevent the search from getting stuck in a local minimum.

Figure 7 Objective results of the Pareto GA

(2) Fuzzy Fitness Functions

Using the fuzzy fitness function defined in figure 2, the satisfied values for f1 and f2 are

set to 0.75 and the satisfied sum of f1 and f2 (Σfj) is set to 1. The most robust point found

by the fuzzy fitness GA is in the theoretical robust area (Figure 8). The corresponding x is

[0.336 0.364 0.002 0.032 0.009], which is in the robust area.

Pareto GA

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
f1

f2

GA_result
robust
Pareto Front

51

Figure 8 Objective results of the fuzzy fitness GA

4.4 Completely dominant GA
 The tolerance in the complete Pareto dominance is set to [0.5 0.5]. If gene A’s

objectives is Pareto dominant to gene B’s objectives minus the tolerance, gene A is

completely dominant to gene B so that gene A’s fitness is better than gene B. Using the

completely dominant Pareto space, the most robust point that completely dominant Pareto

GA found is in the theoretical robust area (Figure 9). The corresponding x is [0.300 0.336

0.081 0.061 0015], which is exactly in the robust area.

 The robust area in design space found by clustering method is shown in Figure 10.

It only plots the design space in x1 and x2 dimension and x3-x5 are very close to zero for

high performance area due to the characteristics of the problem. It is clear that the robust

area CDGA found is located in HP area and has no overlapping with the Non-HP area.

The robust are is the biggest existing cluster that we can find at such tolerance of

objectives. If we change the objective tolerance, i.e., the definition for HP area, the robust

cluster will be changed. Similarly, if we choose other solutions as our robust solution, the

cluster size will not be the largest. Of course, designers can re-modify their requirements

for HP area and tolerance for each design variable so that they can get better optimization

results. But cluster size may be changed accordingly.

Objective space

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
f1

f2

GA results
robust
fuzzy region
Pareto Front

52

Figure 9 Objective results of the completely dominant Pareto GA

Robust design in Design Space

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700

0.000 0.200 0.400 0.600 0.800

x1

x2

HP Area
Non_HP_Area
robust area

 Figure 10 Robust Design Area in Design Space using CDGA

Results Comparison

 Table 2 Comparison of GA performance

γ metric Δ metric Algorithm

Mean Variance Mean Variance

GA real-coded 0.037 0.011 0.77 0.010

CDGA 0.025 0.002 0.60 0.05

Objective space

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.50 1.00 1.50

f1

f2

GA results

robust

Pareto Front

53

Table 2 shows γ and Δ metric results for real-coded Pareto GA and CDGA. CDGA has a

better performance on γ metric (p<0.01).. The variance is very small for CDGA, which

implies that CDGA’s convergence performance is consistent.

 From the simulation, both the fuzzy fitness GA and the completely dominant

Pareto GA were able to locate the robust area and find the robust optimal solution, while

the weighted-sum and common Pareto GA failed for the first example. However, the

fuzzy fitness function requires that designers are knowledgeable about the system to

design a suitable fitness function. It is arguable that designers could have run a number of

simulations to become familiar with the system. The main problem that fuzzy fitness will

face is a larger objective space to search, which increases with problem dimensionality.

The completely dominant Pareto GA can successfully find robust regions and can reduce

the search space. It is intuitively appealing to designers. Designers can have a clear

picture about the range of objectives of the final design.

 Conventional GAs using weighted sum and Pareto multiobjective methods failed

to find the robust area, because these algorithms are designed to converge to the high

fitness area or Pareto front. To meet designers’ robustness criteria, neighborhood of each

solution has to be explored until a robust solution is found. This requires a lot of

additional work and is very difficult to find the most robust solution in practice. In the

completely dominant definition, we can extend the vector [ε, ε,…, ε] to a more general

vector [ε1, ε2, …, εn]. That means we can have different tolerances for different objectives.

4.5 Conclusion
 In this chapter, we have presented the completely dominant Pareto method

selection method for genetic algorithms. This method relaxes dominance condition so as

to relax comparison selection condition. Several genetic algorithms with other selection

methods have been compared with the completely dominant Pareto method for a simple

two objective problem. The results show completely dominant Pareto GA makes

population quickly convergent to HP areas and keep population well distributed at HP

areas. CDGA is proved to be able to help locate the robust solution in HP areas. It is also

an easily implemented general algorithm that does not require much preliminary

knowledge. It is quite possible to combine fuzzy fitness idea with completely dominant

Pareto GA to further cut HP search areas. Further research on applying this technique on

constraints and other co-evolutionary algorithms could extend its applicability.

54

Acknowledgement

This project was supported by John Deere Corporation. We would like to thank Brian

Kellogg, Tye Conlan, Lary Williams and Mac Klingler of John Deere Dubuque Works

for many helpful suggestions and comments

55

CHAPTER 5. DIVERSITY AND ROBUSTNESS IN
MULTIOBJECTIVE OPTIMIZATION

5.1 Engineering Multiobjective Optimization
 Chapter 4 proposed a new Genetic Algorithm – CDGA and used a simple two

objective optimization problem to show CDGA’s performance on convergence, diversity

and robustness. This chapter accesses robustness and diversity performance of CDGA via

simulation studies. Three more examples will be presented to do some deep analysis. One

of them is a standard multiobjective optimization testing problem and has been applied to

different GAs to compare GAs’ performance. The second one is an engineering design

problem with robustness concern. The third one is the brake system design presented in

chapter 3.

 The example in chapter 4 is specially designed to demonstrate CDGA’s

performance on convergence and robustness. This chapter focuses on comparison

between CDGA and other GAs and robustness problems met in real engineering design

problems. Detailed analysis is provided to demonstrate CDGA’s performance.

5.2 Examples
5.2.1 Example 1 – T6 Problem

 To minimize two objective functions f when xi belong to [0 1], i = 1, …, m. The

test function and some empirical results are presented in [21, 22].

f1(x1) = 1-exp(-4x1)sin6(6πx1)

f2(x) = g(x2, …, xm)h(f1(x1), x2, …, xm)

where

 g(x2, …, xm) = 1+ 9*((∑
m

ix
2

)/(m-1)0.25

 h(f1(x1), x2, …, xm) = 1 – (f1/g)2

 m=10

56

Characteristics of Example Problem

The example is a simple two objective optimization problem with ten parameters.

Variables x2, …, xm only affect the objective function f2. The Pareto front is non-convex

and formed with g(x) = 1. This test problem has been used for comparison of different

evolutionary algorithms due to its two difficulties. One is that it has a nonuniformly

distributed Pareto Front (it is biased where f1 is close to 1). The other is that density of

solutions is lowest closest to the Pareto Front [22].

Genetic Algorithms

A multiobjective genetic algorithm with three different fitness functions has been

applied to this problem. The only difference between them is how they assign fitness and

select the next generation. The genetic operators and parameters are listed in table 1. The

non-uniform mutation method selects one variable randomly and sets it equal to a

uniform random number generated from a range decreasing with generation [14, 16].

Table 1 Genetic operators and parameters

GA type Floating point
Initial Population 100
Mutation Non-uniform
Crossover One point
Selection Tournament
Termination 250 generations

(1) Pareto Multiobjective Optimization

 The selection for the Pareto multiobjective GAs is the Pareto dominance. If gene

A dominates another gene B, A’s fitness is high than B’s. Figure 1 shows only the Pareto

multiobjective GA results that fall into the area where f2<1.6. Only a few results are

located at the Pareto front or close to the Pareto front. The Pareto genetic algorithm

doesn’t use diversity technique such as crowding and sharing. The reason for this is to

compare with the completely dominant Pareto GA for the same conditions.

57

GA results

0.000

0.500

1.000

1.500

2.000

0.000 0.200 0.400 0.600 0.800 1.000 1.200
f 1

f 2

GA results
Pareto Front

Figure 1 Objective results of the Pareto GA

(2) Fuzzy Fitness Functions

Using the fuzzy fitness function defined in figure 2, the satisfied values for f1 and f2 are

set to 1 and 1.2 respectively and the satisfied weighted sum of f1 and f2 (f1 + 0.8 f2) is set

to 1.2. This fitness function is chosen based on preknowledge of the Pareto Front so that it

is designed to drive the search to the Pareto Front and not lose much diversity. Figure 2

shows the GA results that fall into the satisfied fuzzy region. More solutions are found at

the Pareto front than Pareto GA. However, the whole HP area is not well distributed.

GA Results using Fuzzy Fitness

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

0.000 0.200 0.400 0.600 0.800 1.000 1.200

f 1

f 2

GA Data
Pareto Front
Fuzzy Region

Figure 2 Objective results of the fuzzy fitness GA

58

(3) Completely Dominant Pareto space

The tolerance in the complete Pareto dominance is set to [0.1 0.1]. If gene A’s objectives

is Pareto dominant to gene B’s objectives minus the tolerance, gene A is completely

dominant to gene B so that gene A’s fitness is better than gene B. More population are

falling into f2 < 1.5 areas than Pareto GA’s (figure 3). The population along the Pareto

front distributes well. The whole population shows an excellent convergence and

diversity. Diversity and convergence measures are shown in the following section.

GA Data using Complete Dominance

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600

0.000 0.200 0.400 0.600 0.800 1.000 1.200
f 1

f2

GA Results
Pareto Front

Figure 3 Objective results of the completely dominant Pareto GA

Discussion

 Simulation has been repeated five times for each case and similar results appear.

From the simulation, both the fuzzy fitness GA and the completely dominant Pareto GA

relaxing selection rule are push more population into HP areas. However, the fuzzy

fitness function requires that designers are knowledgeable about the system to design a

suitable fitness function. It is arguable that designers could have run a number of

simulations to become familiar with the system. Main problems that fuzzy fitness will

face are a larger HP space to search, which increases with problem dimensionality, and

need of diversity techniques. It is hard to design a fuzzy fitness function to push

population distribute evenly. Figure 3 shows that population are denser near f1=1 areas.

The completely dominant Pareto GA can successfully make the population converge to

59

HP area while keeping diversity. It is intuitively appealing to designers. Designers can

have a clear picture about the range of objectives of design in HP areas.

 Table 2 shows a comparison of GA performance between NSGA II Real_coded

with Completely dominant GA Real_coded. Two metrics defined in the paper [21] are

used to measure convergence and diversity performance. As table 6.1 shown, CDGA has

a better convergence performance (γ metric) than NSGA II for T6 testing problem

(p<0.01). The diversity metric (Δ metric) is almost in the same level for both algorithms

(p = 0.25).

Table 2. Comparison of GA performance

γ metric Δ metric Algorithm

Mean Variance Mean Variance

NSGA II real-coded 3.38 0.13 0.668 0.010

CDGA 1.75 0.25 0.678 0.014

 The Pareto GA without diversity control did very poorly on this special problem.

[21] has shown that some multiobjective GAs with sharing techniques can improve

searching. However, any sharing techniques are computational expensive. Completely

dominant selection allows equal producing child opportunity in HP areas at each iteration.

In this way, even without any additional diversity control, it shows a good performance

on such nonuniformly distributed test problem. It is easy for designers to do additional

exploration for design because they can define HP areas and solutions in HP areas are

nonbiased.

60

5.2.2 Example 2 – Simplied Engine Control Design

Figure 4. Engine Control Design model

This is a closed loop engine speed control model. The engine dynamics is simplified to a

function of throttle angle, start of injection, engine speed, load, and inertia. The three

design variables are two control gains and fuel injection time. The objective of the

controller design is to minimize two kinds of tracking errors: stable engine speed state

tracking and accelerating state tracking. For stable engine speed condition, it is desired

that the engine speed control model has a small steady state error. For the second case, it

is desired that the engine speed control model has a quick response time to follow

acceleration trajectory. Since the engine always has disturbance during running, such as

inertia and load changing, the design also wants to meet robustness requirement to

overcome any disturbance in torque feedback.

 The engine dynamics are modeled in Simulink. The complicated dynamic engine

has no explicit function to describe relationship between objectives and design

parameters. To get the design objectives for each combination of design parameters,

designers have to run simulations for 20 seconds to calculate the tracking errors. If using

the traditional design methods, this is very time-consuming to find out the right gains and

the fuel injection time given the contradicting objectives, and the robustness concerns.

However, with the help of the complete dominant GA methods plus automated software

designed in this dissertation, it is easy to solve this multiobjective optimization problem.

61

Our Engineering Design Genetic Algorithm software (EDGA, see appendix) will

manage the evolving process of genetic algorithm by controlling simulation. It

automatically runs everything; include Simulink model simulation, population evolving

process, and optimization results management after the model is hooked up with the

software. All genetic algorithm operators can be set in the software.

 This is a multiobjecitve optimization problem with three design parameters and

two objectives. Since there is a need to meet the robustness requirement, another

uncertainty parameter – torque disturbance is included in the design parameter set,

assuming that the torque disturbance is changing in [0 2] range. In addition, since there is

no uncertainty for control gains, we multiply a scale 100 to the control gains so that any

uncertainty in [0 1] range is ignored. For injection time, engine system can only achieve

one-degree accuracy, so we add half-degree uncertainty in the search of optimal design.

The GA setting is listed in table 3.

Table 3 Genetic operators and parameters
GA type Floating point
Initial Population 32
Mutation Non-uniform
Crossover One point
Selection Tournament
Termination 100 generations

The tolerances for two objectives are set as 0.12 and 0.07 respectively. The robust point

found by Completely dominant GA is 0.18 for Proportional gain, 0.12 for differentia gain,

35 for fuel injection angle. This design point is located on the Pareto Front and has the

most robust resistance to the torque disturbance. If the torque disturbance is changing

between 0 to 2 KN*m, the two objectives are bounded by [±0.12 ±0.07] respectively. If

we want to further minimize the objective variances, the torque disturbance range has to

be reduced. In another word, the disturbance range directly affects the variance of the

objectives. For designers, it is clear that what sacrifice in objective values they have to

bear to overcome the disturbance. If the accepted variance for the objectives could be

larger, there would be more robust solutions that could be picked.

62

Objectve Space

6

7

8

9

10

11

12

0.5 0.7 0.9 1.1 1.3 1.5

Objective 1

O
bj

ec
tiv

e
2

objective area

objective space

robust point

Figure 5. Objective Space

 For the same engine optimizastion problem, if engine characteristics are changed,

i.e. the optimization function is changed while objective functions are still the same.

Applying the same setup for CDGA, figure 6 shows the objective space for the new

engine type. The Pareto Front is moved to a different area due to engine model’s change.

Optimal PID gains and SOI are also changed to different sets. To achieve the same

objective tolerance target, the optimal and robust PID gains and SOI are 0.32, 0.47, and 0,

respectively. However, for this type of Engine, our disturbance to torque is only under

0.25 kN*m range if the same objective tolerance is used. That means we can not achieve

robustness requirments for this type of Engine. To realize the robustness requirement, we

need to either loose robustness requirement or loose optimum target. In another word, it is

possible to sacrifice optimum to achieve robustness for this engine controller design.

63

Objective Space for Engine II

6

7

8

9

10

11

12

0 2 4 6 8 10

Objective 1

O
bj

ec
tiv

e
2

Figure 6 Engine II Objective Space

5.2.3 Example 3 – Brake System Design

 CDGA is also applied to the Hydraulic Brake Design problem mentioned in

Chapter 3 to study design robustness. As complicate the problem is, there are many robust

designs along the Pareto Front. Figure 7 shows two different robust solutions found by

CDGA. Some design variables are located in the same range such as design variable 2, 5,

and 7, while some of design variables are far away. These two solutions are located in the

Pareto Front and have almost the same robustness performance, which tolerate 10%

disturbance for any design variable in 0.1 objective range. In another word, if any less

than 10% disturbance occurs in any design parameters for these two design combinations,

the objectives are guaranteed to be varied less than 0.1. Using the first design variable as

an example, the design table can have 10% disturbance and do not cause large objective

variation. The table is mapped to one design parameter using ratio between the lower

bound and the upper bound. Figure 8 shows the curve of the first design table and its

robust design range.

 In a word, CDGA finds two robust solutions for such complex hydraulic design

problems. If the worst disturbance for design parameters is less than 10%, the robust

solutions can guarantee the objectives of design to be vary in less than 0.1 in its Pareto

Front area.

64

Figure 7. Parallel Plot showing robust design

table design

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4 6 8
spool position

flo
w

 a
re

a

upper limit
design curve
lower limit

Figure 8. Design Table 1 range

5.3 Discussion
 The first example is a standard testing problem for multiobjective optimization.

CDGA has shown significant improvement in convergence and achieved the similar

diversity comparing with NSGA-II. The other significance of CDGA is its simplicity. It

does not have a complicated diversity control techniques, which normally require

tremendous additional search. Combining with certain diversity control techniques is a

65

possible future research area. However, since CDGA is mainly for multiobjectiv

optimization problems with robustness concern. How diversity techniques affect locating

robustness requires more deep studies.

 The second example shows a practical engine control design problem with

robustness concern. Completely Dominant GA has successfully searched the design space

and located a set of design parameters that not only makes the objectives closed to the

Pareto Front, but also gives a minimal boundary for objective variances during

disturbance. The clustering search verifies the boundary is minimal and it could be

smaller in reality. This is very important for designers because they will have confidence

on their controller design. The objectives for the worst case are bounded in a certain

tolerance. CDGA does not need complicated robustness estimation techniques and

automatically makes the final population converge to the robust area.

 The third example is the restudy of Brake System presented in Chapter 3. We

focus on robustness study of Brake System optimization, especially that this example

involves curve design. CDGA has shown that it is able to locate robust design area for

such complex system and is capable to deal with curve design as normal parameters.

Future research on applying CDGA on constrained optimization problems especially

constrains in parameterizing curves.

 This chapter has shown CDGA’s performance on convergence, diversity, and

robustness using different testing problems. CDGA has a superior performance on

convergence and robustness. Its diversity performance is comparable with other Pareto-

based Genetic Algorithms with diversity control techniques. Since the examples used here

are all two objective optimization problems, high dimensional objective problems are

needed to further explore diversity in the future.

66

CHAPTER 6. INTERACTIVE GRAPHICS FOR
ENGINEERING DESIGN INVOLVING DYNAMIC

EQUATIONS AND GENETIC ALGORITHMS

6.1 Introduction
The general engineering design process involves modeling, simulation, and evaluation

[4]. Complex engineering design problems are normally high dimensional and

multiobjective and are modeled by complicate non-linear dynamic equations. It can be

very time-consuming sometimes impossible to find optimal designs by solving dynamic

equations. Several optimization methods have been applied to the engineering design

problem to find the optimal design automatically, such as simulated annealing and Tabu

search [1]. Of these optimization algorithms, evolutionary methods have become popular

because they are gradient-free and generally produce good results [13]. Genetic

algorithms (GAs) have become a commonly-used optimization tool for design engineers

especially for multiobjective optimization problems. GAs can extensively and efficiently

search the design space to find an optimal and robust design combination that meets

design objectives.

Multiobjective optimization means that the optimization problem has several

objectives to meet. Sometimes, objectives are conflicting each other, i.e. if one objective

becomes better, another one will be worse. The optimality of the multiobjective

optimization is defined as Pareto optimality [11]. Dominance is an essential concept in

Pareto optimality. If a solution A is said to dominate another solution B, it means that all

of A’s objectives are better satisfied than B’s. The set of non-dominant solutions among

all possible solutions is called the Pareto front. The goal of multiobjective optimization is

to find a trade-off solution on the Pareto front.

Genetic algorithms (GAs), developed by Holland [8], are one of the most common

evolutionary algorithms. They are inspired by natural selection and survival of the fittest.

GAs are powerful and robust stochastic search and optimization techniques, which have

been applied to many engineering and mathematical areas such as engineering design [4,

6] and stock investment [3]. GAs can solve complex problems that are difficult to solve

with conventional techniques, such as gradient approximation methods. To find an

optimal design or locate the Pareto front requires that GAs extensively explore feasible

design hyperplane regions. The difficulty with using GAs in multiobjective optimization

67

is understanding the solutions as design dimension increases. The Pareto front will form a

complex hyperplane. Furthermore, nonlinear complex dynamics of system will result in

complicated interactions between input and output. It is hard for designers to have an

overall picture of the Pareto Front.

GAs are beneficial for engineering preliminary design because they are capable to

explore High Performance area completely and quickly [5]. In this design stage, design

engineers are more interested in interactions between input and output than finding an

optimal design. Data analysis and visualization in high performance regions will help

engineers better understand multivariable interaction between design variables and

objectives.

Visualization is the visual representation of information (data sets, geometry

models) using graphics, image, or animations. Human’s perception and cognition to

visual effect enable them to rapidly obtain insights in data, such as relationship, clusters,

and trends. Visualization can help engineers to understand the evolutionary process and

underlying relationship between input and output. Traditional visualization methods for

GAs [14, 15] generally show simple graphs displaying fitness or objectives versus

generation time as shown in figure 1. These graphs show overall convergence

information. However, design engineers need to know more about the relationship

between input and output, relationship between different objectives, and robustness of

design, etc. This work explores methods for visualizing data from evolutionary.

Background information for engineering evolutionary design is provided in section 2.

Section 3 presents the modular structure of visualization software and visualization

techniques. Section 4 focuses on using visualization to present useful information for

design engineers, and section 5 concludes the paper

68

GA fitness vs. generation

8.700
8.750
8.800
8.850
8.900
8.950
9.000
9.050
9.100

0 10 20 30 40 50 60

Generation

B
es

t f
itn

es
s

Figure 1 GA fitness evolution process

6.2 Engineering Evolutionary Design using Genetic Algorithms

GAs start from a set of initial population. At each generation, the weaker ones in

the population (low fitness) tend to die and the stronger ones (high fitness) tend to

produce children by crossover and mutation [7]. As generation goes on, the final

population will contain a lot of high fitness individuals, i.e., optimal design combinations.

The general procedure for GAs is as follows:

Set up binary or real number data structure (chromosome) representing design

combination

Create an initial population

 Evaluate solutions in the population

 Repeat

 Select solutions to produce offspring

Produce new solutions from parents’ chromosome by mutation and

crossover

 Evaluated new solutions and put them into the population

 Until stopping condition met

GA uses fitness to evaluate solutions and select the next population. Fitness is a

function of objectives. It reduces high dimensional objectives into one dimension. Some

common fitness functions are weighted-sum fitness function, fuzzy fitness, and

69

dominance rank [1, 5]. The example in this paper is using weighted-sum fitness function,

which is a linear mapping from objectives to fitness ∑ ii objectiveweight * .

Parmee has proposed Cluster Orient GA (COGA) to help engineer do preliminary

study. The basic idea is to keep GA converge to high performance (HP) area quickly,

which is an area close to the Pareto front. The high performance clusters can help design

engineer further understand system such as input and output interactions and design

variables sensitivity. COGA uses variable mutation rate to allow diversity in the final

stage so that it can formulate high performance clusters. In order to prevent low fitness

solutions from falling into clusters, filters, which are using a threshold to filter low fitness

solutions, have to be used in evolutionary process. Engineers face bigger challenge when

using COGA for preliminary study because more results are needed to be studied.

6.3 Visualizing GA Output

Designers build models to simulate system performance. Genetic algorithms (or

other evolutionary algorithms) control models to generate a lot of simulation runs in

evolutionary process. The results from the genetic algorithm are stored in a database

along with the search parameters for the potential solutions. Any visualization can be

constructed through database connection.

The normal data from GAs are chromosomes, objectives, fitness, generations,

parents, and life time. For engineering design, the chromosomes are formulated from

design variables. There are two kinds of design variables: single parameters and look up

tables. Single Parameter is a numeric value such as PID gains. Look-up tables are 2D

curves or 3D surface to model nonlinear characteristics of a particular system. Each

design parameter is one chromosome in an individual gene. For tables, there are several

techniques to construct a curve such as interpolation and parameterization. For example,

if using interpolation method, a table can be represented by one ratio variable. The table

values can be recovered by a conversion as follows:

Table=min_table+(max_table-min_table)*ratio

where min_table and max_table are tables on low boundary and high boundary,

respectively. No matter what technique uses, a table can be represented by several real

number chromosomes.

70

 Figure 2 Visualization Software Structure Diagram

Data Visualization is normally showing high dimensional GA results into 2D/3D

dimensions. Typical plots include time series plot, scatter plot, and parallel coordinate

plot. Time series plot generally is used to show GA’s convergence progress such as

fitness vs. generation. Scatter plot shows correlation of two variables. For high

dimensional data, scatterplot matrix is able to show data in pair dimensions. Projection

method is able to change high dimension data into 2 dimensions so that data can be

viewed in scatter plot. Parallel plot presents a series of data with line connections between

data. The x axis is a set of parallel axles for each variable. It is highly effective to show

input combinations. Most of the existing visualization software packages support all plot

types. Some of them support dynamic visualization, which means that users can interact

with visualization and look at the same data area in different plots. In the following

paragraphs, GGobi is used to show how to use dynamic visualization to present GA

results. The unique feature in GGobi is its Grand Tour method that will be described later.

For GA results, we are trying to visual multivariable relationships, such as:

1) Input space: How well did GAs cover the possible inputs? Are there big empty

spaces in the inputs, combinations that were not run at all? Maybe this suggests doing a

few manual runs of these combinations to check that it is not important for getting good

output.

2) What is the relationship between multiobjective function and the fitness functions?

Are all the objective functions optimized when fitness is optimized, or what are the trade-

offs between objective functions.

3) What is the relationship between fitness and inputs? Does good fitness correspond

to small neighborhoods in the input space?

Engineerin
g Design
Model

Database

Data
Visualization

Genetic
Algorith

Model
visualizatio

Graphics
User

71

Exploring mulit-variable relationship is important to understand complex system

dynamics and nonlinear system characteristics. For example, if a multiobjective

optimization problem is converted to a single fitness function problem, the choice

for the fitness function is critical to optimization. If an undesired fitness function

is chosen, the GA optimization will be pushed to a wrong direction so that the

final optimum may be away from the Pareto Front. Visualization is capable to

help design engineers to explore the design space so that it will help design

engineers to choose a right fitness function.

6.4 Examples

In order to present these techniques, a real industrial backhoe design problem is

used as an example. This design problem has 7 variables to design and four objectives to

meet. Detailed problem description can be found in paper [6]. The design variables are

marked as Design Variable 1 to 7 and the objectives are marked as Objective 1 to 4

respectively. The fitness is the function of four objectives (5 -∑objectives). The design

goal is to maximize the fitness or minimize all objectives in multiobjective sense. GA has

been used to optimize the design and GA results have been put into a database.

1) Conventional Visualization

Conventional visualization, which uses 2D plots, can be easily constructed through

database such as best individual vs. generation and objective convergence. Common

techniques that have been used in presenting high dimensional evolution data include

using Dimension Reduction, Color graph, Glyphs, Parallel coordinate, and Projection [1,

16]. Most of the existing techniques use the static plot to present evolutionary data, which

is good to show evolution process but hard to explore multidimensional relationship. For

engineering designers, the underlining relationship between design variables and design

objectives is more important than evolutionary process. Figure 3 is a typical static plot

suggested in [12]. It shows High Performance points of Objectives 2 and 3 in hyperplane

Design Variable 3 and 6. Objective 2 and Objective 3 are not exclusive in Design

Variable 3 and 6 dimensions because they have overlapping areas. However,

conventional static plots cannot show the multivariable relationship efficiently. It is hard

to know relationship of Objective 2 and 3 in 7 design variable dimension and variable

sensitivity in full dimensions. In addition, all combinations of any two design variables

72

have to manually set up to fully explore interactions. The following visualization

techniques presented are all dynamical and interactive. Designers have more freedom to

look at the data in high dimension and find the information much more quickly.

Sensitivity Analysis

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

0.00 1.00 2.00 3.00 4.00

Design Variable 3

De
si

gn
 V

ar
ia

bl
e

6

Objective 2
Objective 3

Figure 3 Sensitivity Analysis of Design Variable 3, 6

T6 Optimization Example:

T6 optimization problem is a popular testing case for evolution algorithm [18]. It is to

minimize two objective f1 and f2 defined as follows.

f1(x1) = 1-exp(-4x1)sin6(6πx1)

f2(x) = g(x2, …, xm)h(f1(x1), x2, …, xm)

where

 g(x2, …, xm) = 1+ 9*((∑
m

ix
2

)/(m-1)0.25

 h(f1(x1), x2, …, xm) = 1 – (f1/g)2

 m=10

If we assume the objective functions are not known, it is hard to interpret the

relationship between objectives and inputs using static plots due to high dimension.

However, dynamic visualization techniques are able to easily present the relationship. As

shown in figures 4 and 5, as we brush along the Pareto Front in objective space, the input

combinations are highlighted in the Parallel plot. When obj1 (f1) is close to 1 in the Pareto

Front, x2 – x10 are all close to the lowest value (0). X1 is spreading along its range but

forms several clusters, which suggests us that the function between x1 and f1 is

73

multimode. If we brush the points along the f1=1 area, it is easy to identify that x1 is

independent with f2.

Figure 4 Parallel Plot for inputs

Figure 5 Scatterplot for objectives

2) Interactive visualization

 Design engineers not only want to optimize system performance, but also want to

understand the relationship between input and output in order to improve system design.

Typical questions design engineers want to study are how each input affects system

performance, what design combinational is optimal and robust, and what design

combinational results in bad performance.

 Parallel and scatter plots can be used to show the connections among input

variables and high dimensional output. Figure 6 is the parallel plot of three design

variables. In a parallel plot, each line represents a connection between two variables.

Figures 7 and 8 are the scatter plots of two output variables. A technique called brushing

74

is used to help engineers to link these plots and answer above questions using

visualization. Brushing - is the process of selecting multiple data points, shown by a box,

where the corresponding points in other plots identify themselves by changing color. As

in figure 8, certain combinations of Objective 2 and Objective 4 are brushed. The

corresponding points are highlighted in other two plots. The visualization shows that

these combinations have very narrow range for Design Variable 1 and the other input

variables have wide ranges. It suggests Design Variable 1 is sensitive to Objective 2 and 3

while Design Variable 2 and 3 are nonsensitive in this hyperplane area. It is easy to move

brushing areas and look at variable sensitivity in other regions. Parallel plots provide a

possible way to study high dimension interactions by putting several design variables in

and also the input space covered by GA. The dynamical visualization provides quick and

easy interactive method to look at input-output relationships.

Figure 6 Parallel plot of Input design variables

75

Figure 7 Scatter plot of output variables Figure 8 Brushing

3) Multiobjective Exploration

For multiobjective optimization problems, it is difficult for design engineers to

design a desired fitness function to trade-off multiple objectives. For example, if using a

weighted sum method in GA [7], choosing different weights will guide GA to different

directions. Design engineers are interested in the Pareto front, non-dominant sets. If they

have ability to explore the Pareto front, they can choose a trade-off solution themselves.

In our example problem, there are four objectives that can be represented in two 2D

linked plots. Figures 9 and 10 are scatter plots of four objectives. They show some non-

dominated solutions formulating part of the Pareto front in high dimension. Figure 10 is

the fitness distribution plot. By brushing a small non-dominated area in objectives 1 and 3

space, we can see its corresponding fitness and its position in other objective space

(figure 11). In such plot setup, we can not only have an understanding of interaction

between multiple objectives, but also have an insightful knowledge of fitness vs.

objectives. It is easy to remap objectives to a different fitness function and compare

results in the same setup. Linked scatter plots provides an easy way to look at multiple

objectives and study High Performance regions.

76

Figure 9 Scatter plot of Objectives 1 and 3 Figure 10 Fitness distribution

Figure 11 Scatter plot of Objectives 2 and 4

4) High dimensional visualization

For multiobjective optimization problems, high dimensional visualization can help

understand multiple objectives’ evolution. Traditional high dimensional visualization is

using multiple scaling to map high dimension data to 2-D plot. The disadvantage is that

multiple scaling [2] is itself an optimization problem and it rarely exists an optimal

solution. Even if it showed the distance roughly correctly, it could not clearly show what

solution is better and essentially what the Pareto front is.

 The Grand tour is a dynamical view of high dimensional data [14] that maps high

dimensional data into two-dimensional plot while changing the projection matrix

continuously. Users see is an animation of data from different projection angles. The

77

Grand tour not only shows the distance between points in a dynamical way and but also

shows the high dimensional relationship between points. Appendix 1 shows continuous

snapshots from Grand tour for best individuals in a four-variable and seven-variable space

respectively. Combining with brushing techniques, they show that in four-variable space

best individuals form a solid cluster while in seven-variable space they scatter away. It

suggests additional dimensions (Design Variable 2, 4, and 6) are not sensitive as other

four design variables. Grand tour is a powerful tool to show high dimensional projections

and clusters.

5) Pareto Front

The Pareto Front is the set of non-dominant solutions. Since designers can only

choose one solution as the final solution, the final optimal solution is often picked from

the Pareto Front or High Performance Area. Visualization greatly helps designers to

explore the Pareto Front and make the final decision. Multiple scaling and Grand Tour are

not very effective in presenting the Pareto Front. The most effective way found is using

dynamic visualization either in Parallel plot or in scatterplot matrix. The Pareto Front can

be separated from all solutions first and then presented in visualization. Figures 12 and 13

show four-dimension Pareto Front in Parallel plot and scatterplot matrix respectively.

Users can brush any area in one objective and find out the solutions’ positions in other

objective space.

Figure 12 Visualization of the Pareto Front in Parallel Plot

78

Figure 13 Visualization of the Pareto Front in Scatterplot matrix

6.5 Conclusion
Engineering design data has fixed format because of its natural characteristics. It

makes possible to design a generic interface for visualizing engineering design data

generated by genetic algorithms. The generic software structure in the paper can be

extended to any engineering design models and other evolutionary algorithm data. The

multivariable relationship of design variables and design criteria is needed to be fully

explored for designing a complex system. The dynamical and interactive visualization

techniques presented in this paper can help engineers explore the data quickly and

identify unusual pattern easily.

79

Appendix I Snapshots from Grand tour
Figures 14-17 are snapshots from grand tour of GA data. They are
presented in four dimensions with Design Variable 1, 3, 5, and 7. The
highlighted data points are with good fitness.

Figures 18-21 are snapshots from grand tour of GA data. They are
presented in 7 dimensions with all design variables. The highlighted data
points are with good fitness.

80

81

CHAPTER 7. DISCUSSIONS AND CONCLUSION

The thesis focuses on solving difficulties existing in multiobjective optimization

problems for Engineering Design. First, engineering design problems are modeled as in

complex dynamical models, which are hard to apply traditional optimization methods to.

Second, lack of visualization and data analysis methods make it difficult to understand

multivariate relationship in engineering multiobjective design. Third, robustness in

engineering design is a fundamental problem. To balance robustness, optimality, and

diversity is a multiobjective problem itself. Few existing multiobjective optimization

algorithms are aimed at improving robust design for Engineering Design.

For the first issue, we propose applying genetic algorithms to Engineering Design

Optimization. Genetic algorithms are very general optimization techniques that do not

require calculating gradients and having explicit function description of the system. In

particular, genetic algorithms work very well on different types of optimization problems

(continuous and discrete). They are less susceptible to getting stuck' at local optima than

gradient search methods because of its multi-directional search. Engineering design

problems sometimes are so complex that no closed-form transfer function is able to

represent the relationship between outputs and inputs. Design engineers normally build

complex dynamical models in modeling software tool to study system dynamics and

control characteristics. For example, the hydraulic problems presented in the thesis are

typical problems that engineers are facing in current industry. They are high dimensional

design problems and involve non-linear dynamics and uncertainty in disturbance. Without

good optimization tools, currently engineers have to design the system based on their own

experience. Existing commonly used optimization methods such as simulate annealing

and Tabu search, etc, have difficulties to deal with multiobjective optimization problems.

Applying GAs to these high dimensional optimization problems has shown very good

results in the dissertation. This dissertation suggests using real-value GAs for engineering

design problems because it is natural for designer to treat each design input as a gene.

This also makes that crossover operation in GAs will not cut in the middle of a design

input as in the binary format. Existing researches have shown that real-value GAs have

the similar performance as binary ones for real value optimization problems.

There are many varieties of multiobjective Genetic Algorithms dealing with

multiobjective optimization. This dissertation has evaluated different techniques in fitness

82

design for multiobjective GAs. Combining multi-objectives into one fitness function is a

common way to simplify optimization problems and easy for design engineers to

understand. But this method can not explore the Pareto space and will only return one

optimization solution as directed by the fitness function. It is suggested by this

dissertation that this method should be only be applied to some simple problems or the

problems that designers have preliminary knowledge about optimal solutions. Fuzzy

objective functions and dominance based objective functions have been explored and

have shown that they are capable to explore the Pareto Space more thoroughly. But fuzzy

objective design requires that designers have some preliminary knowledge on the Pareto

Front. Different fuzzy functions will result in different search scheme for Genetic

Algorithms. Therefore, the dissertation recommends using dominance based

multiobjective GAs to solve high dimensional and complex optimization problems in

engineering design areas.

In multiobjective optimization, GAs require several design cycles: modeling,

optimization, evaluation. Designers have to explore the design space to decide the final

optimal solution. As Parmee suggested, GA has more impacts on preliminary study. It is

important for GAs to quickly explore the design space and find the High Performance

area. Designers can further explore HP area through clustering or visualization. With this

idea in the mind, we proposed a new Completely Dominant Selection method. The idea is

to relax dominance rule and allow non-dominant solutions to have chance going into the

population. It still pushes searching converge to the Pareto Front or areas close to the

Pareto Front, but prevents stuck into locally dominant solutions. Compared with common

GA’s selection method, it adds a tolerance to dominance concept, i.e., a solution is

dominant to another solution only when the difference is larger than the tolerance. Since

the new selection method does not change the essential dominance idea, many Genetic

algorithms still can be coupled with this idea. We used a standard testing problem for

Genetic Algorithm to show the powerfulness of this new idea. From the convergence and

diversity aspects, the new idea shows a great improvement on performance comparing

with Genetic algorithm without diversity control techniques. The new GA has better

convergence performance than standard NPGA and achieves the same level diversity

performance. Furthermore, the new GA doesn’t need to use complex diversity control

techniques which are computation intensive. Its natural characteristics results in diversity

in the population.

83

There are many research areas that can be explored in multiobjective Genetic

Algorithms. All multiobjective Genetic algorithm optimization share the disadvantage of

extensive searching. It is unavoidable that GAs will search a lot of unrealistic areas in the

view of design engineers. How to guide GAs using expert knowledge is a potential

research area to further improve efficiency of multiobjective genetic algorithm. Other

future research areas include applying this new idea to more existing multiobjective

Genetic Algorithms and solve multiobjective optimization problem with constraints.

 We developed a software tool called EDGA for design engineers to use GAs for

engineering design problems and applied EDGA on a hydraulic design problem from real

industry. It shows that industry design problems are always involved with multiobjective

optimization. The interaction between design variables and objectives is hard to

understand. GA is a good way to explore the problem and find out the Pareto Front

without profoundly knowing relationship between input and output. With the help of

interactive visualization, we are able to present the high dimensional Pareto Front set,

robustness of design, and sensitivity of design variables in high dimension using EDGA.

The application has shown that our software and design concepts help engineers solve

real industry problems.

 For the second issue, we presented various visualization techniques for analyzing

GA results. What makes GA data unique is its complex interaction between genes and

fitness (Pareto dominance) and the existence of the Pareto Front. Existing visualization

methods for GA data can only explicate evolving process and multivariable relationship

in low dimension. We used a real industry design problem as an example to illustrate how

to explore GA data using dynamic visualization. Dynamic visualization allows users

interact with visualization. It can link several different plots together so that users select

an area in one plot and the corresponding areas in other plots will be highlighted. Another

feature of dynamic visualization is to project high dimensional data into 2 dimension

plots and show them continuously by randomly changing project matrix. These

techniques are very powerful to show design variable sensitivity, robustness of design,

and the Pareto Front. For engineering design problems, another visualization linkage can

be established by linking design combination with physical models. In John Deere

Backhoe design project, backhoe model movements are displayed in a virtual reality

environment. Designers can select any design combination saved in database interactively

and look at Backhoe’s movement. It is more impressive for designers to look at system

84

performance before production than look at data. Even though building system graphical

simulation needs additional work, it is worth the effort for designing a complex system.

 Some of high dimensional visualization techniques are hard for designer engineers

to understand, such as projection and grand tour. It will take some training time to get

familiar with these techniques. Researches have proved that there is no significant

improvement if the high dimensional data are projected to 3-D space. Engineers still like

to see normal 2-D plots. In the future, more industry application cases are needed to

present to show how to understand the high dimensional data using dynamic visualization

and how to present GA data using high dimensional visualization techniques.

 For the third issue, we discussed some important issues of multiobjective genetic

algorithms thoroughly in the dissertation. Diversity and convergence are two conflicting

factors in multiobjective optimization. How to balance them is an essential part for

different GAs. For engineering design problems, designers are concerned about design

robustness. Products operated in real environment are susceptible to disturbance and their

manufacturing process is easy to bring tolerance as well. A practical good design should

be satisfactory for optimality and be robust to uncertainty. We suggested using the

completely dominant Genetic algorithm for balancing these two key issues. CDGA is

capable to locate the high performance area without destroying the robustness

information. After CDGA has found the high performance area, we applied clustering

method to find out the most robust area in the high performance area. The simulation

results have shown that CDGA has a great performance on convergence and diversity. In

addition, it shows excellent ability to locate the robust area. CDGA shows significant

performance on convergence and diversity even without any diversity control techniques.

In addition, CDGA is intuitively designed for design robustness consideration. Designers

are able to put their requirements for objectives optimal level and design variable

tolerance into CDGA. CDGA is capable to handle these constraints to find the robust and

optimal solution. Its simplicity makes it suitable for quickly setting up preliminary study

of engineer design as well.

 Different examples have been used to prove the concept of CDGA. Not only the

convergence and diversity performances of CDGA have been studied, but also the

robustness performance has been shown with the examples. The dissertation has

described how to use CDGA to meet designers’ robustness requirement and how to use

clustering algorithm to analyze CDGA’s result to find the robust solution. Simulation

85

results have proved that CDGA is capable to locate the robust solution and determine the

maximum disturbance that system allowed.

In the future, CDGA need to apply to more complex design optimization

problems. Some future research areas include applying CDGA into multiobjective

optimization problems with complex constraints, applying CDGA with diversity control

in high performance area,

 To conclude, this dissertation is dedicated to engineering design optimization

using Genetic Algorithms. It discusses several important issues from GA software for

dynamic modeling, Multiobjective Engineering Design Optimization to Data Analysis. It

has been preliminarily used in industry for designing hydraulic system. Future additional

exploration of software is needed and more complex industry problems are needed to be

tested. The new complete GA has its exceptional advantage over classical multiobjective

GAs and will be applicable to numerous engineering design problems, especially ones

concerning about robustness.

86

Appendix: ENGINEERING DESIGN SOFTWARE

1. Software Overview
 Engineering Design Genetic Algorithm (EDGA) software is designed to assist

design engineer to optimize system using Genetic Algorithm. Design engineers face

varieties of different design tasks in current rapid prototype competition environment. All

design tasks involve optimization in certain design stage. A user-friendly optimization

tool is necessary to help design engineer quickly solve optimization problems.

 It is no surprise that many commercial and non-commercial software packages

have provided various optimization algorithms. For example, there are many different

algorithms in Matlab© Optimization Toolbox, and there are many free Matlab based

optimization software packages [4, 16]. However, design engineers need to implement

their problems into software packages, which could be the hardest challenge.

 Due to design complexity, design engineers always need to transfer their engineer

design problems into computer language so that they can use computer to do complicate

and tedious calculations and simulations. In design industry, many commercial software

packages are available for modeling complicated engineering system. For example,

EASY5© is a graphics based dynamics modeling tool and is developed by Boeing

Company. It has been extensively used in hydraulic control modeling areas such as

airplanes and tractors. Our software is designed to be able to integrate with various

modeling software packages. The integration is independent with modeling software so

that it can be generally applied to optimization problems without limitation.

 Our software is intended to assist design engineers to solve optimization using

Genetic algorithms. The goal is that the software is so easy to use that engineers can use it

in daily basis. It has easy-to-use features and includes many user-friendly interfaces

providing easy interactions. The complicated fitness design part has been simplified by

using interactive graphics design.

 Our software not only provides GA optimization tools, but also provides various

methods to assist engineer to understand system. EDGA has Design by Experiment

functionality and Visualization tools to help engineers do preliminary study and explore

the system. These tools are extremely useful because GA can only optimize system to

where it is designed to search. The preliminary study will help to study multiobjective

relationship and relationship between inputs and outputs.

87

 Software structure is shown in figure 1. The whole structure is database core-

based. Any components’ communication is through database. This structure allows

people work coordinately and share their design experience and results optionally. The

core system is developed by using Perl language. The main reason to use Perl is that its

excellent cross-platform transformability and good efficiency. Its object design ability

and easy GUI development, of course, are its advantage over some other program

languages. Many other tools are not developed in Perl. They are either because certain

algorithms have already been well developed by other packages or many required

libraries have been provided by other packages. Since these tools do not directly

communicate with Perl program, it won’t increase software-using complexity. It is good

for extensibility because many design engineers are not expert on Perl but are familiar

with Matlab and C and capable to develop their own functionalities.

Figure 1 software infrastructure

The integration of modeling software requires an input file, an executable file, and

an output file. The input file specifies parameters and tables users are interested in.

Values of these variables can be changed through PIE interface. The output file contains

the simulation results from the modeling software. Normally it is a time-series file. Users

are able to select multiple outputs they are interested in and generate the output file in the

Intelligent
Search

Design Models
(Easy-5)

PIE (Perl
Interface to
Easy-5)

Database of
model inputs and
outputs

Visualization of
input/output
(GGobi, Matlab) Output summary

variables calculated

88

modeling software. The executable file is the model file generated by modeling software.

In this seamless design structure, any modeling software can be coupled with our

software system.

Designing a high dimensional system requires running many simulations. The

management for simulation data is difficult for engineers. Due to large number of runs, it

is hard to know what combinations have been run and what combinations have not.

Database is used to provide storage and management for large sets of simulation data.

The standard structure of the database makes the whole software easily extensible.

The output file generated by modeling software contains time series output data.

Designers are not normally interested in the whole time response, but are interested in

some summary variables, such as maximum value and overshoot. Our software provides a

data-filter tool to process time series data based on users’ preference. The results will be

stored into database as well.

Simulation results for a high dimensional complex system are very huge.

Designers have difficulty in understanding multi-parameter relationship. Our software

provides high advanced visualization technologies to help designers to understand the

system. Except conventional 2D and 3D plots are provided, high dimensional

visualization has been included in our software. Dynamic and interactive visualization

and Grant Tour (36) provides a new way to look at multivariate data.

Intelligent search tools are to optimize the high dimensional system automatically.

Designers only need to specify what to optimize. Then intelligent search tools use genetic

algorithm (GA) to find the optimal solution in immense design space. Database and

visualization are applicable to GA results as well.

2 Software Integration
 The software is constructed and tested with EASY5 modeling software. However,

its seamless integration method makes it extend to most of modeling software. The

integration structure divides system modeling into three parts: input file, models, and

output file. It requires modeling software should allow this structure. Fortunately, most of

modeling software is compatible with the structure.

 Input file defines a number of input variables. In any modeling software, there are

a number of different variables with certain initial values. They are stored into a separated

file (For example EASY5) or can be put into a file and load it before simulation (For

89

example, SIMULINK). To make software compatible with any modeling software, there

are only two choices to handle input file. Either a universal compatible input file format

has to be created or each input file format has its own input file processing method. The

first way doesn’t exist in reality. Each modeling software has its own input file format,

which makes it impossible to convert between each other. The universal format is not

going to happen in modeling software industry in the near future. So the second way is

the only possible way, which is exactly what EDGA employs. This way sounds

complicated because it has to provide input file processing functions for almost each

modeling software. Due to EDGA’s modular design, it is actually very easy to implement

different processing methods. EDGA has separated processing function into an

independent library. For different modeling software, EDGA only needs to load the

corresponding library. From users’ usage point view, there is no actual difference so that

EDGA is easy to extend to other modeling software packages.

 Models contain actual design information. In dynamical modeling, complicated

differential and integration equations with nonlinear functions are constructed to simulate

input and output relationship in models. It has no surprise that each dynamical modeling

software has its own design methods. However, this will not affect EDGA. EDGA only

calls simulating models through modeling software. For example, if using SIMULINK,

user can run SIMULINK models through MATLAB command sim. To run SIMULINK

models from EDGA, a MATLAB engine dll file has to be set up to call the MATLAB

command sim. Even though it seems that EDGA goes through a long way to run models,

this structure makes it independent with modeling software. It only needs to build

connections with command to run models. This setup is also good for compatibility.

 To check if system meets requirement, system response has to been recorded. As

dynamical modeling simulates system dynamics and use integration to solve differential

equations, the output from modeling software is always time series response. Dynamical

modeling software generally provides powerful capability to handle output files. Users

can set up any format they want. Therefore, it is possible to set up a standard for output

file format so that EDGA does not need to be modified for different modeling software

packages. The general output format that EDGA accepts is the first line of output file is

variable names separated by spaces. The first column is simulation time. The rest

columns are output variables users are interested. Any output file processing in EDGA is

based on this format.

90

 Figure 2 shows the main interface for EDGA. All the functionalities can be found

in interface’s menus. The interface is designed following general GUI characteristics. Perl

does a good job on keep interface same on different platforms.

3 Software Description

3.1 Design by Experiments
Design engineers have to do many trials to test their design. For example, if they

are design 5 parameters to optimize certain system, they normally choose three values for

each variable: minimum, median, and maximum. In this approach, they have a basic

feeling how each variable affect system so that they can decide if design is worth to do

further investigation. Five variables will make total simulation number to be 243. Without

a good tool to manage running such many runs, no design engineer is willing to run them

manually. First of all, it will take so much time. People have to wait with sitting before

computer till it finishes one run, then sets another combination and runs it again. It is

going to be a nightmare for such large runs. Secondly, it is impossible to remember what

combinations have been run and what ones have not. People may have to write down

combination information into a file themselves and search for combinations have not been

run in the file. It is not going to be easy in this way. Third, it is hard to match output files

with input combinations. If users want to see a particular run, they have to find the

filename in record and then plot them. It is not easy to switch different output displays.

Our system is capable to provide easy management and control for multiple runs.

Users can select any number of design variables and set any number of values for each

variable. Then all the combinations will be stored into database and simulation will be

handled by software. Users do not need to interact with system at all. EDGA will

automatically manage running all the runs and store simulation runs into database.

After users select design variables defined in the input file, the main interface

changes as figure 3. Users can define number of values and value for each version.

EDGA provides an interpolation function to fill with large number of values easily. In

addition, it allows several design variables are linked together. The linkage between

multiple variables means that these variables have certain relationship. For example, if a

backhoe is loaded, not only its mass is changed, but also system inertia is changed. It

makes sense to change these two variables together in designing backhoe.

91

In designing complex system, it is very common to modeling some system

characteristics in 2D table interpolation. 2D table represents a nonlinear relationship

between an input and output, which is hard to be modeled in math. It often comes from

experiments. For example, in hydraulic system, a control valve has its characteristic

pressure vs. flow property. This curve shape in the valve is what design engineers want to

design. In modeling, the 2D table is represented in a 2D array. If engineers want to

redesign the array, they have to manually type in values for 2D array in modeling

software traditionally. EDGA provides graphically interactive method to design curves as

figure 4. It is easy for users to rescale or reshape curves. Users can use interpolation to

generate a set of curves of which boundaries are defined.

Figure 2 EDGA main interface

Figure 3 EDGA interface after adding parameters

92

Figure 4 Table Graphical Design Interface

 As users set up all parameters and tables, EDGA will take over control and

manage to run all the combinations. EDGA has a multi-thread software structure so that it

can handle different tasks’ communication and show running status of simulation. It will

tell users how many runs are left and what is the estimated running time required. It is so

convenient that users can make running experiments fit their schedule and not affect their

other works. Because database is used to store combinations, EDGA has ability to check

input combinations easily so that ones already in the database do not need to run again. If

Design By Experiment matrix is too big, the simulation of EDGA can be stopped any

time and resume again.

 All the simulation data will be stored in a local directory users specified and can

be put into database as well. The simulation output files are marked by a unique number,

which corresponds to input combinations with same id in the database. This setup

provides a linkage between input and output files, which is very important for further

development. It makes possible to present data visually without searching linkage

information.

3.2 Output Analysis
 After running experiments, a lot of simulation runs recording system outputs are

stored. The actual goal of running tedious experiments is to look through data and find

interesting results. Each simulation file contains time series data for several variables. It

will take a long time to visually examine each time series data set. It is almost impossible

to clearly present graphs showing all the runs for large runs. EDGA provides output file

93

processing techniques to capture unique characteristics from time series data so that

design engineers can do prescreen quickly. It often helps them to better understand

relationship between input and output.

 A set of time series data is a data sequence. Designers are not interested the whole

sequence but some unique characteristics. These characteristics are used to evaluate

system design and compare with other designs. For example, in designing a controller, to

decide a controller whether good or bad can be evaluated by steady state tracking error

and system response rising time. Clearly designers want to get zero tracking error and the

quickest response. These two characteristics of course can be pulled from looking at time

series data. However, it would be nicer to generate exact results by processing output data.

 Figure 5 shows a typical step response from an actual system. Some features that

might interest design engineers are overshoot, peak value, and settling value. EDGA

provides a derived data function, which is processing output files to generate derived

values. Currently EDGA derived function supports Peak Value, Peak Time, Overshoot,

Decay Ratio, Settling Value, Settling Time, Minimum, and Maximum. Users can select

any derived values for each output variable. EDGA will process all the simulation files

and store derived values into database. The derived values are stored in the same order of

file id order so that they are easy to be connected with input combinations. The data

processing function can be easily extensed.

3.3 Visualizations
Design by experiments will generate a large number of data. Design engineers

often have trouble in exploring the data. Data needed to be studied contain input

variables, which formulate input combinations, output variables derived from time series

data, and time series data files (figure 5). It forms a network of data. The most effective

way to quickly explore data is using visualization. Graphics contains the deepest and most

comprehensive information. Most of the important, it is easy for engineer to understand

and share information. Designers want to be able to walk among these pieces of data

freely. For example, they need to find out system response for a special combination or

need to find the combination with the quickest response. Sometimes, designers want to

see a set of combinations’ response to compare their results. Therefore, software should

94

be designed to let users easily switch visualization views for any variables and

any.simulation data.

Angle_Degrees

-20

-15

-10

-5

0

5

10

0 1 2 3 4 5 6

Time

A
ng

le

Figure 5 Typical time series response

Database makes it possible to easily pull data from any point in the net. All the

data from the same simulation run have the same id in the database so that they are linked

together. Database has a powerful searching and sorting algorithm so that visualization

software can interact with database quickly. In addition, people can share the data through

the database server. Because of its standard format, people have no problem to use them

and are able to use any visualization software based on MYSQL database.

EDGA doesn’t provide actual visualization functions. Its main function is to put

data into database and manage the database. Because of database’s popularity, a lot of

software has functionalities to communicate with database. For example, Matlab is

popular software using in engineer community. Engineers are familiar with Matlab

environment and be able to develop programs using it. It has ability to communicate with

database through c mex functions, and even the latest version has its own library for

database communication. It is so easy to develop some programs to plot certain graphs.

Figure 6 is one matlab GUI provided auxiliary by EDGA. It is able to plot time series data

from any number of files and put them together. EDGA has many other matlab GUIs such

95

as 3D plot and sensitivity analysis plot. All these plots are for special purpose. Users can

develop their own special purpose analysis tool using simulation data or data from

database.

EDGA has a special connection with high dimensional visualization software

GGobi. GGobi is evolved from XGobi and is a high dimensional statistical visualization

software package. Besides that it is able to provide common plots such as scatter plots,

time series plots, and parallel plots, most of unique features are its interactive and

dynamic visualization. Each plot in the GGobi can be linked to other plots. It has a special

selection method called brushing, which is that the corresponding points selected in one

plot are highlighted in other plots. Through dynamic brushing, it is easy to see

connections between several plots. For example, if one plot is set as a parallel plot to

show input combinations, and the other plot is set as a scatter plot to show two output

variables, brushing can easily tell that which combinations have the best response for

these two outputs and what response of each combination has. Another of nice features is

that GGobi has a projection method to show high dimensional data in a 2D plot. It is

using a continuous random projection animation to show high dimensional data.

Experienced users can detect high dimensional relationship between each dimension and

clusters of data in high dimension.

96

Figure 6 Matlab 2D plot interface

Even though GGobi supports many data formats, database communication has not

yet been fully supported. EDGA provides an GUI interface to load data from database

and pass data into GGobi. It is called Data Visualization User Interface (DVUI). It is not a

simple bridge between database and GGobi, but also has many data handling methods.

Database stores tremendous sets of data. They are all useful for each analysis task.

Designers may only be interested in a subset of data. It is also important to reduce data

size for better visualization purpose. Figure 7 shows interface of DVUI. Users can select

parts of variables from long list of variables in the data and set boundary for each

variable. The data control strategy is very useful to visualize large data sets such as

automobile warranty data and weather records.

97

4. Evolutionary Design Interface
Evolutionary Design Interfaces are designed to assist engineers to optimize system

performance by using Genetic Algorithm. Interfaces include Gene design interface, GA

operator design interface, and Objective design interface (figures 7-9).

In Gene design interface, designers can select parameters and tables from the

input file. The boundaries and resolutions can be set for each parameter or table. The

interface provides ways to distinguish design variables with condition variables.

Condition variables are the ones that the system is required to run on different values. For

example, if a system is required to run on three different engine speeds to check

performance, the engine speed variable is considered as a conditional variable. Design

variables forms actual genes in GA.

Figure 7 Data Visualization User Interface

98

Figure 8 Genetic algorithm Gene Design Interface

.

Figure 9 Genetic Algorithm Fitness Design Interface

GA operator interface is used to set GA’s characteristics, such as initial

population, mutation and crossover methods, and selection methods. The interface is

designed as simple as possible to meet engineers’ requirement. A lot of detailed algorithm

characteristics have been predefined.

Objective design interface is a key element. Designers use this interface to specify

what to optimize. As real system always has multiple objectives to optimize, the interface

is designed intuitively for multiobjective system. Three different multiobjective

99

optimization methods: Weighted sum, Fuzzy fitness, and Pareto front optimization, are

provided in the interface. Designers are able to select summary variables from a list of

output variables and select what type of fitness function to use. Software allows users to

see the fitness design for each objective graphically. GA will find the optimal solution

based on users’ fitness setting.

 All mentioned visualization techniques can be used in analyzing GA results

because GA data are stored into database as well. Except that, EDGA provides additional

visualization tool to show convergence of GA.

4.1. Genetic Algorithm

One of the problems met in applying GA into engineering design is how to handle

tables. A table is defining a nonlinear relationship between two variables. In practice, it is

using an x-y 2D table to represent the relationship. Any value not in the table can be

found by interpolating two neighboring x values. It is clear that one design parameter is

represented by one chromosome. There are three basic ways to represent tables. The

simplest way uses the interpolation between lower bound and upper bound tables to

represent a table. The advantage of this method is that only one chromosome is used to

represent one table. The disadvantage is that the shape of designing table is predefined.

Another easy way is using the whole table points as genes. For example, table in figure 11

is defined by 10 x-y points. Ten chromosomes will be used to represent y values of these

ten points. In this way, designers have much more freedom to design a curve, but the

dimension increases dramatically.

The trade-off solution is to use a parameterized curve. A curve can be separated

into several parts and each part is represented by a parameterized curve. For example, if

using spine curve, the whole curve can be parameterized into four points. If the starting

point of the curve is fixed, then the whole curve can be represented by three points. For

more complex curves, several parameterized curves can be used. The disadvantage of

parameterized curve is that mutation and crossover operators can easily generate curves

not meeting curve constraints such as table boundaries and monotonous. Rejection

techniques have to be used in Genetic algorithm to meet constraints.

100

Figure 11 Design tables

Current GA interface only supports the first way to deal with curves. The

parameterized curve method requires that users should know how to program

parameterize curves and implement constraints. It is hard to implement in a general form.

Additional table parameterizing function can be established to support this feature.

5. Conclusion
Current industry is lack of a software tool to apply genetic algorithms to

dynamical modeling problems. We developed a complete set of software tool, called

EDGA software for Engineering Design using dynamical modeling software. EDGA’s

generic design enables it to be easy to couple with any models developed in dynamical

modeling software. EDGA not only provides functionality to optimize system using GA,

but also provides Design by Experiments and visualization features to further help

explore the system. Designers are able to use Design by Experiments to do preliminary

study of complex system and use visualization to explore simulation results. Then

designers can use GA to optimize system performance on the basis of preliminary study

results. GA’s results can also be analyzed using visualization. The relationship between

input and output and the Pareto Front shown in visualization will help designers to pick

an optimal solution from the optimal solution set located in the Pareto Front. This process

can be repeated until designers make the final decision. EDGA is the first Design

Automation Software for dynamical modeling software. The advantages of EDGA can be

summarized as follows:

101

1. Software generic structure allows easy coupling with any models;

2. Easy-to-use interface enables users to design easily, especially for designing

tables;

3. Multiobjective Genetic algorithms allows different fitness design;

4. Database makes data storage and management easily.

5. Visualization extends software optimization capability.

One of the possible future developments for EDGA is implementation of interactive

Genetic algorithms. Interactive Genetic Algorithm [69] has caught recent attentions

because real system optimization is very complex and it is impossible to state how to

optimize system using GA without studying the system extensively. The idea is to

separate a complex problem into several subsystems and optimize them separately.

Designer can interact with design process and connect these subsystems to get a global

picture of the original picture. Another possible extension for EDGA is implementation of

various Genetic Algorithms. It has been found that different GAs may have huge

performance difference on diverse problems. It would be nicer to have more GA options

for designers.

102

REFERENSES

1. Abraham, J.A.R., Parmee, I. C., “User-centric Evolutionary Design Systems – the

Visualization of Emerging Multi-Objective Design Information”, In Proceeding of

Xth International Conference on Computing in Civil and Building Engineering

Weimar, June 02-04, 2004

2. Acharjee, S. and Zabaras, N., "A gradient optimization method for efficient design

of three-dimensional deformation processes", in the proceedings of NUMIFORM,

the 8th International Conference on Numerical Methods in Industrial Forming

Processes (edt. S. Ghosh), Columbus, Ohio, June 13-17, 2004

3. Aizawa, A. N. and Wah, B. W., “Dynamic control of genetic algorithms in a noisy

environment,” in Proc. Conf. Genetic Algorithms, pp. 48–55, 1993

4. ANDERSSON J. AND KRUS P., “Metamodel Representations for Robustness

Assessment in Multiobjective Optimization”, accepted publication in Proceedings of

the 13th International Conference on Engineering Design, ICED 01, Glasgow, UK

August 21-23, 2001.

5. Andersson, J, “Multiobjective Optimization in Engineering Design”, Doctoral

Dissertation, Linkongping University, Sweden, 2001

6. Arnold, D., “Evolution strategies in noisy environments—A survey of existing

work,” in Theoretical Aspects of Evolutionary Computing, L. Kallel, B. Naudts, and

A. Rogers, Eds. Heidelberg, Germany: Springer Verlag, pp. 239–249, 2001.

7. Ashlock, D., “Evolutionary Computation for Modeling and Optimization”, 2004

8. Bäck, T., and U. Hammel, “Evolution strategies applied to perturbed objective

functions,” in IEEE World Congress on Computational Intelligence, vol, 1, pp.40-

45, IEEE, 1994.

9. Basalaj, W, “Proximity Visualization of Abstract Data,” Doctoral Dissertation,

University of Cambridge, UK, 2001

10. Bauer, J. R. “Genetic Algorithms and Investment Strategies,” John Wiley & Son,

Inc. 1994

11. Beaty, S., J., "Genetic Algorithms Versus Tabu Search for Instruction Scheduling,"

Artificial Neural Nets and Genetic Algorithms, 1993

12. Berenji, H.R. and P. Khedkar, “Learning and Tuning Fuzzy Logic Controllers

Through Reinforcement,” IEEE Transactions on Neural Network, 1992.

103

13. Bernard, J., J. Gruening and K. Hoffmeister, “Evaluation of Vehicle/Driver

Performance Using Genetic Algorithms,” SAE 980227, 1998

14. Bonham, C. R., Parmee, I.C., “Improving the Performance of Cluster-oriented

Genetic Algorithms (COGAs),” In Proceedings of IEEE Congress on Evolutionary

Computation, Washington D.C., pp 554 - 561,1999

15. Bonham, C. R., Parmee, I.C., “An Investigation of Exploration and Exploitation in

Cluster-oriented Genetic Algorithms,”In W. Banzhaf and et al., editors, GECCO--

99: Proceedings of the Genetic and Evolutionary Computation Conference, Orlando,

Florida, USA; pp 1491 - 1497; 1999

16. Bosman, P. and Thierens, D., “The Balance Between Proximity and Diversity in

Multiobjective Evolutionary Algorithm,” IEEE Transactions on Evolutionary

Computation, VOL 7, NO.2, P174-188, April 2003.

17. Bosman, P. and Thierens, D., “Multi-objective optimization with diversity

preserving mixture-based iterated density estimation evolutionary algorithms,” Int.

J. Approx. Reasoning, vol. 31, pp. 259–289, 2002.

18. Branke, J., “Efficient evolutionary algorithms for searching robust solutions,”

ACDM, Page 275 – 286, 2000.

19. Brake, J. and Schmidt C., “Faster Convergence by means of fitness estimation,” In

Soft Computing, 2000.

20. Carlos Manuel Mira da Fonseca, “Multiobjective Genetic Algorithms with

Application to Control Engineering problems,” Doctor Dissertation, The University

of Sheffield, 1995

21. Cheng, R. and M. Gen., “A survey of genetic multiobjective optimizations”

Technical report, Ashikaga Institute of Technology, 1998.

22. Cobb, H.G. and Grefenstette, J.F. “ Genetic Algorithms for Tracking Changing

Environments,” Proceeding of 5th International Conference on Genetic Algorithms,

P523-530, 1993

23. COELLO C., An empirical study of evolutionary techniques for multiobjective

optimization in engineering design, Dissertation, Department of Computer Science,

Tulane University, 1996.

24. Coello, C. A., “A Comprehensive Survey of Evolutionary-Based Multiobjective

Optimization Techniques,” Knowledge and Information System, An International

Journal, l(3), 269-308, 1998

104

25. Coello, C. A., “Evolutionary Multi-Objective Optimization: A Historical View of

the Field,” IEEE Computational Intelligence, pp. 28 – 36 , 2006

26. Curotto, E. “Applications of the Structural Comparison Algorithm for Simulated

Annealing Optimizations and Stochastic Simulations,” Technical Proceedings of the

2001 International Conference on Computational Nanoscience and Nanotechnology,

P1-P4, 2001

27. Cvetkovic, D. and Parmee, I. “GENETIC ALGORITHMS BASED SYSTEMS FOR

CONCEPTUAL ENGINEERING DESIGN,” Proceeding of the Congress on

Evolutionary Computation, P29-36, 1999

28. Cvetkovic, D. and Parmee, I. “Evolutionary Design and Multi–objective

Optimisation,” Proceedings of the sixth European Congress of Intelligent

Techniques on Soft Computing”, P397-401, 1998

29. De Jong, K.A, “An Analysis of the Behavior of a Class of Genetic Adaptive

Systems.” Ph.D. thesis, University of Michigan, Ann Arbor, MI, (1975)

30. Deb, K. and Goel, T., “Controlled Elitist Non-dominated Sorting Genetic

Algorithms for Better Convergence”, First International Conference on Evolutionary

Multi-Criterion Optimisation, 67-81, Zurich, 2001.

31. Deb, K., Pratap, A., et. al. “A fast and elitist multiobjective genetic algorithm:

NSGA-II,” IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,

VOL. 6, NO. 2, APRIL 2002.

32. Deb, K., “Multi-objective Genetic Algorithms: Problem Difficulties and

Construction of Test Problems,” Evolutionary Computation, vol. 7, pp. 205-230,

1999

33. Deb, K. and Gupta, H., “Introducing robustness in multiobjective optimization,”

Kanpur Genetic Algorithms Lab. (KanGAL), Indian Inst. Technol., Kanpur, India,

Tech. Rep. 2 004 016, 2004.

34. K. Deb and T. Goel, “Controlled elitist nondominated sorting genetic algorithms for

better convergence,” in Proceedings of the First International Conference on

Evolutionary Multi-Criterion Optimization—EMO 2001, E. Zitzler, K. Deb, L.

Thiele, C. A. C. Coello, and D. Corne, Eds. Berlin, Germany: Springer-Verlag, pp.

67–81, 2001

35. Dennis Jr., J.E. and More, J.J., Quasi-Newton Methods, Motivation and Theory,

SIAM Review 19, 46-89, 1977.

105

36. Dick, G., “An Explicit Spatial Model for Niching in Genetic Algorithms,” The 15th

Annual Colloquium of the Spatial Information Research Centre, 2003

37. “Expanding Users for Dynamical Modeling,”

http://www.fwc.com/publications/heat/heat_pdf/9601-020.pdf, 1996

38. Fang, X. and B. Kellogg, et al., “High Dimensional System Design Using Genetic

Algorithms & Visualization,” American Control Conference, 2003.

39. Fleming, Peter and R.C. Purshouse. "Evolutionary algorithms in control systems

engineering: a survey." Control Engineering Practice, vol.10, p.1223-1241, 2002

40. Fonseca, C. and Fleming, P., “Genetic Algorithms for Multiobjective Optimization:

Formulation, Discussion and Generalisation,” Fifth International Conference on

Genetic Algorithms, 416-423, California, 1993.

41. Fonseca, C.M. and Fleming, P.J., “An Overview of Evolutionary Algorithms in

Multiobjective Optimization,” Evolutionary Computation, 3(1): 1-16, 1995

42. Forouraghi B., “A Genetic Algorithm for Multiobjective Robust Design”, Applied

Intelligence, vol. 12, no. 3, pp. 151-161, 6 May 2000

43. Gaspar-Cunha, A. “RPSGAe – Reduced Pareto Set Genetic Algorithm: A

Multiobjective Genetic Algorithm with Elitism,” The Second Workshop on

Multiobjective Problem Solving from Nature, 2002.

44. Gen, M. and R. Cheng, “Genetic Algorithms & Engineering Optimization,” Wiley,

New York, 2000.

45. Glover. F., “Tabu Search - Part I,” ORSA Journal on Computing, vol. 1, pp. 190-

206, 1989.

46. Goldberg, D.E. and Richardson, J.E., Genetic Algorithms with Sharing for

Multimodal Function Optimization,Proceedings of the Second International

Conference on Genetic Algorithms, 41-49, 1987.

47. Goldberg, D. and J. Richardson, “Genetic Algorithms in Search, Optimization and

Machine Learning,” Addison-Wesley, Reading, MA, 1989.

48. Hart, E. and Ross, P., “GAVEL – A new Tool for Genetic Algorithm Visualization,”

IEEE Transactions on Evolutionary Computation, VOL 5, NO.4, P335-348, August

2001.

49. Hayashi, S. “NONLINEAR PHENOMENA IN HYDRAULIC SYSTEMS”

http://www.fluid.power.net/techbriefs/hanghzau/1_3.pdf, 1999

106

50. Herreros A, Baeyens E, Peran JR., “Design of PID-type controllers using

multiobjective genetic algorithms,” ISA Trans., 41(4):457-72, Oct. 2002.

51. Holland, J., “Adaptation in Natural and Artificial Systems,” University of Michigan

Press, Ann Arbor, MI, 1975; MIT Press, Cambridge, MA, 1992.

52. HESTENES, M., AND STIEFEL, E. Methods of conjugate gradients for solving

linear systems. Nat. Bur. Stand. J. Res. 49, 409–436, 1952

53. Horn J. and Nafpliotis N., Multiobjective optimization Using Niched Genetic

algorithm, Technical Report IlliGA1 93005, University of Illinois, Urbana

Champaign, Urbana, Illinois, 1993

54. Horn, J., Nafpliotis, N., and Goldberg, D. E., “A niched pareto genetic algorithm for

multiobjective optimization,” in Proceedings of the FirstIEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence, J.

J. Grefenstette, Ed. Piscataway, NJ: IEEE Press, pp. 82–87, 1994

55. Houck, C. Joines, J, and Kay, M. “A Genetic Algorithm for Function Optimization:

A Matlab Implementation,” NCSU-IE TR, 1995

56. Hughes, E.J. “ Evolutionary Multi-objective Ranking with Uncertainty and Noise,”

EMO 2001, P329-343, 2001

57. HUGES E., “Evolutionary Multi-objective Ranking with Uncertainty and Noise”, in

Proceeding of the 1st International Conference on Multi Criteria

EvolutionaryOptimization, Zurich, Switzerland, March 7-9, E. Zitzler et al. (eds.),

Lecture Notes in Computer Science No. 1993, Springer Verlag, Berlin, 2001.

58. Jin, Y, and Sendhoff, B., “Tradeoff Between performance and robustness: An

evolutionary multiobjective approach,” In EMO 2003, P237-251, 2003.

59. Jin, Y. and Branke, J., “Evolutionary Optimization in Uncertain Environments – A

Survey,” IEEE Transactions on Evolutionary Computation, VOL 9, NO.3, June

2005, P303-317

60. Karaboga, D., “A Simple and Global Optimization Algorithm for Engineering

Problems: Diferential Evolution Algorithm,” Turk. Journal Elec Engin, 53-60.

P1080-1091 , 2004

61. Katangur, A.K., Pan, Y, and Fraser, M.D., “Simulated annealing routing and

wavelength lower bound estimation on wavelength-divisionmultiplexing optical

multistage networks,” Optimal Engineering, Vol 43 No. 5, May 2005

107

62. Kokolo, I., Hajime, K., and Shigenobu, K., “Failure of pareto based MOEAs: Does

non-dominated really mean near to optimal?,” In Proceedings of the Congress on

Evolutionary Computation 2001 (CEC 2001), vol. 2, pp. 957 – 962, Piscataway,

New Jersey, IEEE Service Center, May 2001

63. Kirkpartrick, S., Gelatt, C. D., and Vecchi M.P. “Optimization by simulated

annealing,” Science, 220:671-680, 1983

64. Knowles, J. D., “Local Search and Hybrid Evolutionary Algorithms for Pareto

Optimization,” Doctoral Dissertation, The University of Reading, 2002.

65. Knowles, J. D. and Corne, D. W., “Approximating the Nondominated Front Using

the Pareto Archived Evolution Strategy ,” Evolutionary Computation 149-172, 2000

66. Laumanns, M., Thiele, L., et al., “Combining convergence and diversity in

evolutionary multi-objective optimization, “ Evolutionary Computation, vol. 10, no.

3, pp. 263-282, Fall 2002

67. Lohn, J.D., Kraus, W.F., and Haith, G.L. “Comparing a Coevolutionary Genetic

Algorithm for Multiobjective Optimization,” Proceeding of the 2002 IEEE Congress

on Evolutionary Computation, pp. 1157-1162, May 2002.

68. Lu, H. and Yen, G., “Rank-Density-Based Multiobjective Genetic Algorithm and

Benchmark Test Function Study,” IEEE Transactions on Evolutionary Computation,

VOL 5, NO.4, P335-348, August 2001.

69. Luengo, K. and Raydon, M. “GRADIENT METHOD WITH DYNAMICAL

RETARDS FOR LARGE-SCALE Optimization problems.” Electronic

Transactions on Numerical Analysis, Volumn 16, pp. 186-193, 2003

70. Man, K. F., Tang, K. S., and Kwong. S. Genetic Algorithms: Concepts and Designs.

Springer, New York, 1999.

71. Marrison, C. I. and Stengel, R. F. “Robust Control System Design Using Random

Search and Genetic Aglorithm,” IEEE Transactions on automatic control, VOL 42,

NO 6, P835-839, 1997

72. Michalewicz, Z. “Gene Genetic Algorithms + Data Structures = Evolution

Programs,” Springer-Verlag Berlin Heidelberg 1994.

73. Mostaghim, S. and Teich, J., “The role of ε- dominance in multi objective partical

swarm optimization methods,” In Proceedings of the 2003 Congress on

Evolutionary Computation (CEC 2003), vol. 3, pp. 1764-1771, Canberra, Australia,

IEEE Press, Dec. 2003

108

74. Neelamkavil, F.. “Computer simulation and modeling,” John Wiley & Sons Inc,

1987

75. S. R. Nassif, “Modeling and Forecasting of Manufacturing Variations”,Proc.

ACM/IEEE ASP-DAC, 2001.

76. NEELAMKAVIL F., Computer Simulation and Modeling, John Wiley & Sons Inc,

1987.

77. NILSSON K., ANDERSSON J. AND KRUS P., ”Method for Integrated Systems

Design – A Study of EHA Systems”, in Proceedings of Recent Advances in

Aerospace Hydraulics, Toulouse, France, November 24-25,1998.

78. Oliveira, L.S., et al, “Feature Selection Using Multi_Objective Genetic Algorithms

for Handwritten Digital Reconition,” in 16th ICPR, P568-571, 2002

79. Oppacher, F. and M. Wineberg, “The Shifting Balance Genetic Algorithm:

Improving the GA in a Dynamic Environment,” in Proceedings of the Genetic and

Evolutionary Computation Conference, Vol. 1. pp504-510, 1999.

80. Packham, I S J and Parmee, I. C., “Data analysis and Visualization of Cluster-Orient

Genetic Algorithm Output,” Proceedings of the International Conference on

Information Visualization pp173-178, 2000

81. Pareto V., “Cours D’Economie Politique. Lausanne, ” Switzerland: F. Rouge, vol. I

and II, 1896

82. Parmee. I.C., et al., “Interactive Evolutionary Conceptual Design Systems,”In

Proceedings of International Conference on Artificial Intelligence in Design,

Worcester, Mass. USA; June 2000

83. Prasad, T. D., “Multiobjective Genetic Algorithms for Design of Water Distribution

Networks,” Journal of Water Resources Planning and Management, Vol. 130, No.

1, pp. 73-82, January/February 2004

84. Pohlheim, H “GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with

MATLAB”, http://www.systemtechnik.tu-ilmenau.de/~pohlheim/GA_Toolbox/

1997

85. Pohlheim, H. “Visualization of Evolutionary Algorithms – Set of standard

Techniques and Multimensional Visualization,” Proceedings of the Genetic and

Evolutionary Computation Conference, P533-540, 1999

86. Powell, M.J.D., Nonconvex Minimization Calculations and the Conjugate Gradient

Method, Lecture Notes in Mathematics, Vol. 1066, pp. 122-141, 1984

109

87. Qi, R., Vittal, V., Kliemann, W., and D., C., Visualization of Stable Manifolds and

88. Multidimensional Surfaces in the Analysis of Power System Dynamics. Journal of

Nonlinear Science, 10:175-195. 2000.

89. Raymer, M. L., et al., “Dimensionality Reduction Using Genetic Algorithm,” IEEE

Transactions on Evolutionary Computation, VOL 4, NO 2, P164-171, July 2000

90. Reardon, B. J., “Fuzzy logic versus niched Pareto multiobjective genetic algorithm

optimization,” Modeling Simul. Mater. Sci. Eng. 6 (1998) 717–734, 1998

91. Raghuwanshi, M.M. and Kakde, O. G., “Survey on multiobjective evolutionary and

real coded genetic algorithms,” Asia Pacific Symposium on Intelligent and

Evolutionary Systems 2004, P 115 – 126, 2004

92. Ray, T., “Constrained robust optimal design using a multiobjective evolutionary

algorithm,” in Proc. Congr. Evol. Comput, pp. 419–424, 2002

93. RAO S. S., Engineering Optimization, John Wiley & Sons Inc, 1996

94. Roy. R and Sevick-Muraca, E. , "A numerical study of gradient-based nonlinear

optimization methods for contrast enhanced optical tomography," Opt. Express 9,

49-65, 2001

95. Roosenburg, N. and Eekeks, J.. “Product Design: Fundamentals and Methods,” John

Wiley & Sons Inc, 1995.

96. Shimodaira, H., “A Diversity Control Oriented Genetic Algorithm (DCGA):

Development and Experimental Results,” In Proceedings of the Genetic and

Evolutionary Computation Conference, Vol. 1. pp 603-611, 1999.

97. Singh, A., Minsker, B. S., and D. Goldberg, "Combining Reliability and Pareto

Optimality - An Approach Using Stochastic Multi-Objective Genetic Algorithms,"

American Society of Civil Engineers (ASCE) Environmental & Water Resources

Institute (EWRI) World Water & Environmental Resources Congress 2003 &

Related Symposia, Philadelphia, PA, 2003.

98. Shine, W. B. and Eick, C. F., “Visualizing the Evolution of Genetic Algorithm

Search Processes,” IEEE International Conference on Evolutionary Computation,

April 1997.

99. Simon H.. The Sciences of the Artificial, MIT press, 1969.

100. Skogestad, S. and L. Postlethwaite, “Multivariable Feedback Control,” Wiley,

England, 2001.

110

101. Srinivas, N. and Deb, K., Multiobjective Optimization Using Non-dominated

Sorting in Genetic Algorithms, Evolutionary Computation, volume 2(3), pp. 221-

248, fall 1994.

102. Shipton, S. “Bifurcation Phenomena in a Channel with an Expanded Section,” 2000

ASME Fluids Engineering Summer Conference, 2000

103. Spears, W., “An overviewof multidimensional visualization techniques,” in

Proceedings of the 1999 Genetic and Evolutionary Conference Workshop Program,

A.Wu, Ed. San Mateo, CA: Morgan Kaufmann, pp. 104–105, 1999

104. Taylor, J. T., “From Artificial Evolution to Artificial Life,” Doctor Dissertation,

University of Edinburgh, 1999.

105. Teich, J., “Pareto-Front Exploration with Uncertain Objectives,” Evolutionary

Multi-Criterion Optimization, First International Conference, pp314-328, 2001.

106. Ursen, B.K, “Diversity-Guided Evoluationary Algorithm,” In: Proceedings of

Parallel Problem Solving from Nature VII (PPSN-2002), p. 462-471, 2002

107. Venkataraman, P., “Applied Optimization with MATLAB Programming,” John

Wiley & Sons, Inc, 2001

108. Weeks, R. W. and Moskwa, J.J., “Automotive Engine Modeling for Real-Time

Control Using MATLAB/SIMULINK,” SAE 950417, 1995

109. ZIMMERMANN H.-J. AND H.-J. S., “Intelligent system design support by

fuzzymulti-criteria decision making and/or evolutionary algorithms,” in Proceedings

of IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 1995

110. Zitzler, E., Deb, K. and Thiele, L. “Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results," Evolutionary Computation, 8(2), pp. 173-195,

Summer 2000

111. ZITZLER E. AND THIELE L., “Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach,” IEEE Transaction on

evolutionary computation, vol. 3, pp. 257-271, 1999

112. http://www.mathtools.net/MATLAB/Optimization/Genetic_algorithms/ Mathworks.

113. Zitzler, E., Laumanns, M. and Thiele. L., SPEA2: Improving the Strength Pareto

Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich,

Switzerland, 2001.

	2007
	Engineering design using genetic algorithms
	Xiaopeng Fang
	Recommended Citation

	Microsoft Word - Dissertation_Fang_Final.doc

