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ABSTRACT 
 

As modern computational and modeling technologies grow, engineering design 

heavily relies on computer modeling and simulation to accelerate design cycles and save cost. 

A complex design problem will involve many design parameters and tables. Exploring 

design space and finding optimal solutions are still major challenges for complex systems. 

This dissertation proposed to use Genetic Algorithms to optimize engineering design 

problems. It proposed a software infrastructure to combine engineering modeling with 

Genetic algorithms and covered several aspects in engineering design problems. The 

dissertation suggested a new Genetic Algorithm (Completely dominant Genetic algorithm) to 

quickly identify High Performance Areas for Engineering Design. To help design engineers 

to explore design space, the dissertation used a new visualization tool to demonstrate high 

dimensional Genetic Algorithm results in dynamical graphics. Robustness of design is 

critical for some of the engineering design applications due to perturbation and 

manufacturing tolerance. This dissertation demonstrated to use Genetic Algorithms to locate 

robust design areas and provided a thorough discussion on robustness and diversity in depth. 
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CHAPTER 1. INTRODUCTION 
 

1.1. Introduction 
 In a product design process, many complex multiobjective optimization problems 

occur. For example, in designing an engine controller, appropriate fuel injection times 

and air-fuel ratios have to be decided to improve engine fuel economy and power 

performance. But engine fuel economy and power are also affected by hundreds of other 

engine conditions, such as intake manifold pressure, intake manifold temperature, coolant 

temperature etc. How to control fuel injection time and air-fuel ratio with respect to these 

conditions to achieve the optimal fuel economy and power performance is an extremely 

complex problem. Engineers need to improve the design using simulation and 

optimization techniques. There are many challenging issues in solving complex 

engineering problems. The first issue is how to improve the design efficiency. Current 

industries need to develop high quality products in a short time due to competition or 

design cycle requirements. Traditional design processes can be much improved by using 

computational engineering tools. The second issue is how to optimize the complex 

design. The engineering optimization problems are normally high dimensional and with 

conflicting objectives. The optimization algorithms need to be introduced to help explore 

design space and find the optimal solution. The third issue is how to meet robustness 

requirements. Engineering design always has uncertainties due to manufacturing 

tolerance and perturbation in real operation. These three issues are the main focus of this 

dissertation. 

Rapid prototyping helps to speed up the design process and explore research and 

development ideas. Engineers are able to build complex computational models to 

simulate many physical dynamics, such as combustion dynamics, fluid dynamics, and 

vibration dynamics. Model accuracy has been improving as we understand more about 

the system and computational power is enhanced. Industries are able to study prototyping 

before any manufacture production happens. However, even with the help of 

computational modeling, the design process is a long and tedious procedure and requires 

a lot of experiments and simulations to explore the design concept. How to improve 

design process efficiency is still one of major challenges in current industrial world. 

This dissertation proposes some new design methods to help engineers get 

through the obstacles. Automatic design is to combine optimization tools with modeling 
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process. Engineers are able to explore and optimize the system during modeling process. 

Interactive design is to further explore the system using expert knowledge. Designers are 

able to provide guidelines to optimization process and redefine conditions during 

optimization. Data management system provides ways to handle data analysis and support 

automatic and interactive design process. Most importantly, new data visualization 

methods have been applied to help better understand the system so as to improve the 

design and reduce the design cycle time. 

 The second issue that the dissertation is addressed is complex system 

optimization. As engineering problems become more numerically complex, it is difficult 

to find a good solution due to constraints on feasible space, natural conflicts between 

optimization objectives, and lack of understanding of what a good solution is. In the 

engine example mentioned above, for restricted emission requirements, optimal fuel 

injection times and air fuel ratios are changing with engine conditions. Fuel economy and 

power are always two conflicting objectives. Considering that there are numerous other 

design variables, such as air pressure and injection pressure, affecting engine fuel 

economy and power performance, the whole design task is complex and requires 

tremendous design and test efforts. 

 As engineers face design optimization problems in daily basis, general purpose 

searching algorithms are needed to assist them to find solutions quickly. The dissertation 

proposes to use Genetic algorithms (GAs), which are a popular type of searching 

algorithms. GAs use the evolution idea of survival of the fittest, to do a population based 

search. With the help of GAs and graphical user friendly interface of GA software, 

engineers can solve complex optimization problems without fully understanding the 

system and gain deep knowledge of the system by analyzing GA searching results. 

 One of difficulties in engineering design and multiobjective optimization is to 

meet robustness requirement. The dissertation presents a new Genetic Algorithm, which 

is designed to handle robust optimization problems. The new Genetic Algorithm 

combining with Clustering algorithm is capable to guide the optimization search to the 

most robust area. Several examples have been used to prove the new concept. 

 This dissertation focuses on general multiobjective optimization problems 

occurring in engineering design. The goal is to speed up the design process, explore 

complex system design problems better, and meet design robustness requirement. The 

organization of the dissertation is as follows: Chapter 1 contains the general introduction 
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of the dissertation. Chapter 2 is literature review in related research areas, and 

background information about motivation of research. Chapter 3 gives a real industrial 

design example and presents results generated from Engineering design Genetic 

Algorithm Software. Chapter 4 discusses uncertainty in optimization problem and 

proposes a new approach to handle multiobjective optimization in GA. Chapter 5 is the 

continuous discussion on multiobjective GA algorithm dealing with uncertainty, 

including diversity and design robustness using several examples. Chapter 6 provides 

some of my experience regarding to using graphics to show GA results for better 

understanding. Finally, a brief conclusion and some future potential research areas are 

given. A description about engineering design software created for applying these 

techniques to engineering design   is in the appendix. 
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CHAPTER 2. BACKGROUND 
 

2.1. Overview 
 This chapter provides background information on three different multiobjective 

optimization areas: Engineering Design Optimization using GAs, a new Genetic 

Algorithm (CDGA), and robustness in multiobjective optimization. It also provides a 

literature review of related research areas. 

 Multiobjective optimization problems have several objectives to be 

simultaneously optimized and sometimes some of objectives are conflicting. The 

difficulty in optimizing conflicting multiobjective problems is lack of the global optimum 

and existence of many local optimal areas as dimension increases. There may be no 

global optimum for the conflicting multi-objective problems. Considering in vector space, 

if all elements in a vector are optimal, the vector is considered as the global optimum. But 

if there is no other ones better than one vector in all dimension. This vector is considered 

as a non-dominate solution. The optimum in multiobjective optimization is the Pareto 

Front, which is a set of non-dominant solutions. All non-dominant solutions form the 

Pareto Front set. There is no guarantees that the Pareto Front set is connected or convex. 

Fully exploration for the Pareto Front set sometimes is very difficult.  

 Current multiobjective optimization techniques fall into two categories: 

combining multiple objectives into one scalar objective, whose solution is just one point 

in the Pareto Front, and searching the Pareto Front. The first category changes 

multiobjective problems into single objective problems so that all traditional optimization 

methods can be applied to, such as gradient methods and simulate annealing. The 

disadvantage of changing to single objective problems is that the optimal solution is only 

the solution that is designed to be searched. The whole Pareto Front set is not explored. 

The second category is trying to explore the full Pareto Front set. Many traditional 

optimization methods are hard to apply for this kind of optimization. Heuristic search 

methods are the main techniques used for searching for the Pareto Front because they do 

not require mathematical descriptions of optimization problems and are guaranteed to 

find good solutions in a reasonable time. The disadvantage of heuristic search is that it 

might not always find the best solutions and the search is time consuming. 
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 The dissertation is inspired by the multiobjective optimization problems met in the 

real industry design. It intends to help engineers to solve multiobjective optimization 

problems with robustness requirements using genetic algorithms. 

 

2.2 Dynamics and control system 
 System dynamics are the time series responses of a system to a set of inputs. The 

dynamics of the system can be viewed as a time-dependent function of the set of inputs, 

but the function is hard to be defined for a complex system. Dynamics are normally 

described using high dimensional differential equations, which can be modeled in 

simulation. But simulation has to change the continuous dynamical system to a discrete 

time system in the digital world. The simulation result is very sensitive to the simulation 

time step. Generally, the smaller the time step is, the closer the result is to the real value. 

System response errors can be controlled by simulation time step and integration 

algorithms. If differential equations describe system dynamics as accurate as real 

dynamics, simulation response can be modeled very close to real response. Dynamics in 

many of complex system such as vehicle dynamics and fluid dynamics have been 

simulated using sophisticated computer models. 

Modeling uses a simplified representation of a system to enhance our ability to 

understand, predict, and control the behavior of the system [74]. Modeling is an important 

process in developing new industrial products. Thanks to the powerful modeling 

software, engineers are able to set up dynamic models for complicated systems very 

quickly when they have understand system dynamics.  

The design process involves modeling, simulation, and evaluation. According to 

Roosenburg and Eekels [95], the design process is iterative and consists of analysis, 

synthesis, simulation, evaluation and decision. It is rare that the simulation of the first 

design will meet the expected properties. Designers have to adjust system parameters, 

even change system design to meet the performance criteria. It is viewed as a tuning 

process in controller design [12]. The process defined by Roosenburg and Eekels is 

shown in figure 2.1. The process can be viewed as an optimization process as stated by 

Simon [99]. 
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2.3. Optimization 
Optimization finds the minimum or maximum value for a function and its 

location, while design problems need to meet some performance criteria. It is always 

possible to change a design problem into an optimization problem. Designing system 

parameters is changed into finding the location in the input space that optimizes the 

system.  

Optimization problems can be formalized as the follows: Vector X∈x where X is 

a subspace of Rn, objective function ))x(,),x(),x(((x) kfff K21=f ∈  Rk. The goal is to 

minimize (x)f  with X∈x subject to some conditions G(x)>0. For high dimensional 

multiobjective problems, k and n are larger than 1. (Note that minimizing (x)f is 

equivalent to maximizing (x)f- ). The conditions G(x)>0 are constraints. 

If (x)f is a continuous function, according to Newton’s theory, the minimum 

occurs either at the boundary or where ∂ (x)f /∂ x = 0. In order to solve the problem 

based on Newton’s theory, we need to solve equation 0),...,( 1 =∇ nxxf  and find all 

singular points for (x)f .  The nonlinear equation 0),...,( 1 =∇ nxxf  is normally not easy to 

solve.  

To avoid solving difficult nonlinear equations and calculating the second 

derivative to find out whether a point is a local minimum, local maximum, or saddle 

point, many optimization search algorithms have been developed. If optimization 

algorithms calculated the gradient, they are called gradient-based search algorithms such 

as steepest descent and conjugate gradient [52, 86]. The basic idea is the search begins 

with a random start point. At each iteration step, the search will move in the direction 

with the largest decrease in the value of (x)f , which is the direction of directional 

derivative has the greatest value. The steepest descent method is defined as the following 

formula. 
kkkk Fxx ∇−=+ α1  

kk xx ,1+  = values of the variables in the k and k+1 iteration 

F(x) = objective function to be minimized (or maximized) 

∇ F = gradients of the objective function 
kα  = the size of the step in the direction of travel 

The steepest descent method is known for its simplicity but seldom converges reliably.  
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It is well known that the gradient algorithms tend to get stuck in local optima. 

There are many variations on how to control the step size to avoid being stuck in local 

optimum. In practice, the gradient is often hard to compute. Newton’s gradient 

optimization methods require the calculation of not only the first derivative, but also the 

inverse Hessian. Conjugate gradient methods are invented for solving the quadratic 

problem: minimizing (½) xTQx – bTx. For non-quadratic problems, it is hard to 

approximate Q. In dynamical modeling, there are no clear mathematical equations 

defining the relation between output and input. To use gradient based algorithms to 

optimize system, the gradient of each parameter at each state has to be calculated through 

simulation. The calculation cost will increase exponentially as the number of parameters 

increases. In real engineering optimization, systems are normally nonlinear and have 

many complex nonlinear phenomena, such as bifurcation and chaos. In addition, many 

design problems involve curve design. A curve is a look up table defining a function of 

two variables. For example, hydraulic systems often have curves for valves that define the 

relationship between flow or pressure and the position of the valve. In real industry 

design, curves are often converted to finite dimension design variables using interpolation 

or curve parameterization.  Two close curves will sometimes result in significantly 

different response. Therefore, objective functions in engineering optimization problems 

are often not smooth, sometimes even not continuous with respect to the curve. It is 

difficult to apply gradient optimization methods to problems with non-smooth objective 

functions. 

Another approach is using stochastic search. If there is no limit on execute time 

and cost, the best solution can always be found through a complete search. Due to the 

curse of dimensionality, the search space increases exponentially with dimensionality. 

Modern heuristic search algorithms are based on the assumption that good solutions are 

more probably close to other known solutions than randomly picked solutions. The basic 

idea of heuristic search algorithms is only searching paths that tend to lead to the goal 

rather than searching the whole space. By minimizing searching space, heuristic search 

algorithms can find solutions much quicker than random searching. For any heuristic 

algorithm, it needs an evaluation function to decide how good the path is. This evaluation 

will decide what the next search path at the next iteration is. 
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   Figure 2.1 Design Process 

 

 

2.4. Heuristic search algorithms 
2.4.1. Hill climbing algorithm 

There are many different heuristic search algorithms. One of most common earlier 

used algorithms is hill climbing. The basic strategy is to evaluate all possible paths and 

choose the best one (analogous to climbing a hill). The well-known disadvantages of hill 

climbing algorithm are: 1. If it starts at a foothill, it is not likely to find the hill summit. 2. 

If the plane is flat, hill climbing algorithm has no clue which direction it should go. 3. If 

the search reaches a local top, it has to go down to find the global one.  

The advantage of hill climbing is its simplicity and its easy implementation. It has 

no requirement on optimization functions and pre-knowledge of the problem. The only 

thing it needs is an evaluation function to evaluate each generated solution. Due to its 
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simplicity and generalization, it has shown great performance on some simple 

optimization problems. 

One way to partially alleviate the pitfall of being stuck in local optima is to use 

multi-start hill climbing [60], which increases the probability to find the global optimum. 

However, the time and cost can be tremendous compared to other search algorithms. 

Therefore, hill-climbing algorithms are best suited for unimodal optimization problems. 

 

2.4.2. Simulated annealing 

Simulated annealing is inspired by the physical cooling process of metal materials. 

The molten metal has to be cooled slowly and evenly to prevent from cracking. 

Borrowing the same idea for optimization, simulate annealing enhances neighboring 

search by allowing occasional long moves to prevent from getting stuck in the local 

minima [21, 61, 63].  

In the first stage of the algorithm, the parameters vary over a wide range.  As the 

algorithm goes on, the search space becomes smaller and the final solution is hopefully be 

settled into the global optimal solution. The probability of accepting solution j from 

solution i at the kth step is: 

  
⎪
⎩

⎪
⎨

⎧

>

−
≤

=

)()(

)()(
)()(1

),(

ifjfifkc
jfif

e

ifjfif
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ck is the cooling schedule and normally decreases to close to zero as simulation is going 

on. Therefore, at the first stage, the algorithm basically allows any direction of search. At 

the final stage, as ck is close to zero, the search will only towards the better solution. The 

search result is dependent on the cooling schedule. 

 Simulated Annealing sometimes is very slow, even though it has been proven to 

converge to the optimal solution if the right cooling schedule is used [61]. For high 

dimensional optimization problems, it often is stuck in local optimal point. A general 

cooling schedule with guaranteed convergerce for all optimization problems has not been 

found. Despite this, simulated annealing has been widely applied on a variety of areas, 

including scheduling, and network routing according to [61, 63]. 
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2.4.3. Evolutionary algorithms 

 Evolutionary algorithms use biological concepts to solve optimization problems 

by emulating evolutionary processes. The idea first came up as early as in the 1950s with 

limited applications [28]. In the 1970s, as computing improved, it attracted more interests 

from varieties of scientists and engineers. 

 Evolutionary algorithms have a variety of derivations. They share the same 

strategy: 

  Create an initial population 

  Evaluate solutions in the population 

  Repeat 

   Select solutions to produce offspring 

   Produce new solutions by copy and variation 

   Evaluated new solutions and put them into the population 

  Until Done 

Evolutionary algorithms first create an initial population of data structures. The data 

structure can be varied depending on algorithms. For example, binary genetic algorithms 

use fixed length binary numbers as their basic data structure. The data structure, which 

contains certain information, is called as chromosome in genetic algorithms. Genetic 

programming uses a parse tree as its data structure. It has various data length as the parse 

tree is changing. Evaluation normally uses a fitness function to compare solutions and 

may affect what parents are chosen to produce children for the next generation. In 

producing new solutions, two variation methods, mutation and crossover, are generally 

applied to combine parents’ data structures to produce children’s. Crossover exchanges 

parents’ data structures so that children’s data structures share some of parents’ 

characteristics. Mutation changes part of the children’s data structures in order to bring 

variations in the children’s data structures. The next step is to select among the parents’ 

children’s population and to form a new population of solutions for next iteration. The 

main loop is iterated until the stop condition is met.  

 Compared with simulated annealing, evolutionary algorithms use population-

based search instead of one-way search. It has more chance to skip local optimum. 

What’s more, different search paths can exchange their information so as to speed up 

search process. The mutation and crossover operators are much easier to set up than the 

proper cooling schedule. Although evolutionary algorithms are computationally 
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expensive, it is a good geneal algorithm to solve complex optimization problem, 

especially with multiple local optima.  

 Evolutionary algorithms evolve over time to find the solution digitally. Each 

unique solution has its own data structures containing its own information. If the data 

structure is not varied between solutions, it is called fixed data structure evolutionary 

algorithm. Otherwise, it is non-fixed data structure evolutionary algorithm. There are 

many common used evolutionary algorithms, including genetic algorithm, finite state 

machines, and genetic programming. Each of them has wide applications covering 

different areas [41, 44]. 

 

2.4.4. Genetic Algorithm 

One of the most common evolutionary algorithms is the genetic algorithm. 

Genetic algorithms are based on the mechanism of natural selection. They follow the 

standard iteration steps as evolutionary algorithms. They use binary or floating genes to 

represent design variables with fixed length. At each iteration, they use pairs of two genes 

with high fitness to generate new genes by crossover and mutation. The next population is 

selected in parent and children genes according to fitness.  

When genetic algorithm first came up in the late 1970s, it used binary gene 

representation in most cases. Genes are defined, in biology, as a sequence of DNA that 

represents certain characteristics. The 1 and 0 sequence in the GA gene represents a 

unique solution. Each of binary numbers is called one chromosome of the gene as called 

in biology. Mutation and Crossover are both used in Genetic algorithm. In GAs, crossover 

is just exchanging genes at certain crossover point. Figure 2.2 illustrates a crossover 

example with gene length being 5. The crossover position is the end of the second 

chromosome. Crossover has various types. The most common ones are one-point 

crossover and two-point crossover, i.e. the crossover happens at one position or two 

positions respectively. Mutation flips the binary bit at certain position as shown figure 

2.3. Generally it assigns a small probability rate for mutation at each position.  
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Figure 2.2 One Point Crossover Example 

 
Figure 2.3 Mutation Example 

 

 Selection keeps the population size stable. It inserts some of the children into the 

population to replace old ones. The good solutions have large possibility to survive than 

the bad solutions. The selection pressure makes solutions tend to improve along the 

evolution process. Generally, there is a selection rule to compare solutions, for example, a 

fitness function which is a function of optimization objectives. Solutions with high fitness 

have more chance to survive in the selection process. 

There are many selection methods to evolve the population that can be divided 

into two categories: elite and non-elite. Elite selection methods assure that the best 

individuals of the population go to the next population. Elitism favorites individuals with 

the best fitness and makes them to produce more children. Some of non-elite selection 

methods are roulette wheel selection and tournament selection. Roulette selection assigns 

each individual gene a probability, which is in direct proportional to its fitness. The 

individual with high fitness has high probability to be picked.   Tournament selection 

shuffles the population randomly and divides them into small groups. At each iteration, 

half the population with better fitness will survive.  

 Each iteration in a GA is called a generation since some individuals disappear in 

the population and new individuals appear. The population size stays stable through 

 
          Mutation          
 
 

 
           Crossover 
 
 
 

1 0 0 0 0 1 0 1 1 1 
 

1 0 1 1 1 1 0 0 0 0 
 

1 0 1 1 1 1 0 0 1 1 
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generations. The number of generation affects running time of GA and affects its ability 

to locate global optimum.  

 Another commonly used data representation is real-value gene. Although real 

value number can be changed into the binary format, which may result in resolution lost, 

real valued GAs are intuitively suitable for engineer problems. Real valued representation 

keeps each design variable as a unique chromosome so that crossover does not happen in 

the middle of one design variable as using binary representation.  Crossover in the real 

value GA is almost the same as binary GA while mutation is quite different. Real valued 

GAs normally use one point mutation, i.e., only mutating one design variable each time. 

The value of the chosen mutating point changes in a certain range.  

 

2.5. Multiobjective Optimization 
 As stated above, optimization problems are described as optimizing f(x) = (f1(x), 

f2(x), …, fn(x)). Assuming minimization, if f(x) is a scalar value, the optimization goal is 

to minimize this value. But if f(x) is a vector, i.e., it is a multiobjective optimization 

problem. The optimization goal is to minimize all the objectives, fk(x), simultaneously.  

If an optimization problem has only one objective to minimize, many optimization 

methods can be used to minimize the objective, for example, hill-climbing and simulated 

annealing mentioned above. However, if it has multiple objectives, it is sometimes not 

possible to find an optimal solution with respect to all objectives. Figure 2.4 shows a two 

objective optimization example that has no global optimum. Objectives f1 and f2 have a 

feasible area due to limitation on inputs and function characteristics (left figure). There is 

no one global optimum for this example because it is not possible to achieve minimal f1 

and minimal f2 at the same time. The optimum for multiobjective problem has new 

definition to deal with conflicting objectives. 

If all objectives of solution A are smaller than ones of solution B, A is considered 

as dominating B. For example, a vector (3, 4) dominates vector (4, 6) but does not 

dominate vector (2, 10) according to domination definition above. If a solution cannot be 

dominated by all other solutions, it is considered to be a Pareto optimal solution. All 

Pareto optimal solutions formulate a Pareto optimal front. Figure 2.4 shows the Pareto 

optimal front for the example (right figure). 

In multiobjective optimization problems, any solution on the Pareto optimal front 

is an optimal solution. The multiobjective optimum is the Pareto optimal front. The task is 
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changed to find the Pareto optimal front, which is normally a high dimensional area. Then 

the decision which solution is the best is taken with respect to other criteria such as 

robustness and cost. Human (decision maker) need to be involved in this selection 

process. 

 
Figure 2.4 Multiobjective Optimization Problem Example 

 

To solve multiobjective optimization problems, there are many different 

algorithms. Generally they can fall into three basic approaches: 1. aggregating method: 

transfer the multiobjective into a single objective; 2. criteria method: optimize one 

objective at one time; 3. Pareto method: Use the Pareto optimal idea to find Pareto 

optimal front then select the final solution. For a multiobjective problem, if a mapping 

from all objectives to a fitness function is constructed, then the multiobjective problem 

are changed to single objective optimization problem. The mapping can be generally 

represented as follows: 

 f(x) = (f1(x), f2(x), …, fn(x))  g(x)  

There are several different methods for forming multiobjective functions such as 

weighted sum and fuzzy logic fitness. This single objective function can be optimized 

using many optimization algorithms such as the algorithms mentioned. The disadvantage 

of the approach is that it only finds one solution not the whole Pareto optimal front. Since 

the solution found is directly decided by the mapping, the decision maker has to know 

which direction search should go before the search.  If the decision maker knows how to 

trade-off all objectives, it is suitable and very efficient to use this method. For example, if 

engine designers want to optimize engine’s emission and fuel economy simultaneously, 

f1 

f2 

Design 
Variable 1 

Design 
Variable 2 

 

Pareto Front 
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one way to trade-off two objectives is to choose the best fuel economy with meeting 

emission requirement.  

 Criteria methods can only minimize one objective for each search process. 

However, the idea can be borrowed to use in evolutionary algorithms. An individual with 

one minimal objective is at the Pareto front. It contains some information to help EA to 

locate the overall Pareto front. A practical application is to start multiple search 

processes, each of which is attending to optimize one objective. Individuals among 

different processes can exchange information by crossover.  The interactive GA that 

Parmee suggested is using such techniques. 

 For some multiobjective problems, it is hard to choose a trade-off from the Pareto 

optimal front. The Pareto front needs to be further explored to make the decision. In the 

engineering design, typically designers have no idea what value of each objective can be 

gotten through the design. For example, in designing diesel engines, there are two 

emission limits: NOx and Particulate Molecular (PM) to be met. Before the design, 

designers have no idea how low NOx and PM can be reached. The objective set must be 

explored to find a design that can meet emission standard. In this situation, the whole 

Pareto front should be found in optimization process. Population based search algorithms 

are more suitable for this task. 

 

2.5.1. Multiobjective GA 

 GAs have been extensively applied to multiobjective optimization problems since 

they can locate the Pareto front. Traditional GAs use a fitness function to evaluate 

solutions. This is only suitable for a single objective problem. For multiobjective 

problems, this method results in converging to single point on the Pareto Front. Instead of 

using fitness functions, another evaluation method such as Pareto dominance, which is 

able to to compare solutions for GA selection, is needed. Pareto dominance is clearly a 

right choice. 

 Pareto dominance is used to compare two solutions. If a solution is dominant to 

the other, it is a better one. Selection favors the dominant solution and makes it produce 

more children. Goldberg [46] has suggested a ranking method for population comparison. 

In his formulation, at each iteration, the population is searched for nondominant solutions. 

These solutions are ranked as 0 and are removed from the population.  Then another set 

of nondominant solutions are found in the remaining population. They are ranked as 1 
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and also removed from the population. The process is repeated until all solutions have 

been ranked.  

 There are some other variations of ranking methods. Goldberg’s ranking is 

divided the population into many layers of Pareto front. In Multiobjective Genetic 

Algorithm (MOGA) ranking method [43], each individual’s ranking is determined by the 

number of individuals by which it is dominated. The global Pareto front has the same 

rank 0 as in Goldberg’s method. But the rest has quite different rankings. There are many 

multiobjective genetic algorithms such NPGA II [31], SPEA II [113] with variations in 

selection methods and diversity control techniques. 

 Any population based ranking method takes lots of computation time, especially 

for a large population. But GAs need to use large population sizes to find the whole 

Pareto front. Otherwise, the population will be filled with all non-dominant solutions. To 

make the search more efficient, tournament selection methods can be used for 

multiobjective GAs. Local dominance ranking is only needed for tournament selection. 

However, tournament group size becomes an important factor to affect selection process, 

which complicates its application in practical use. 

  

2.6. Diversity 
One of the major problems in evolutionary algorithms (EAs) is that simple EAs 

tend to converge to local optima. If there are several local optima in a single objective 

problem, EAs sometimes will be stuck in a locally optimal solution. In multiobjective 

problems, the Pareto optimal front can be very large. EAs have a tendency to converge to 

local areas without covering the whole optimal front space. For both single objective 

optimization and multiobjective problems, diversity is important to prevent from being 

trapped in local optima. 

Diversity and convergence are two conflicting factors in any evolutionary 

algorithms. If a high selection pressure is applied, individuals will quickly be replaced by 

better fit ones and diversity will decline in a short while. If a low selection pressure is 

applied, EAs will take too long to converge. Several studies have been carried out for 

keeping diversity in the population while allowing rapid convergence. Bosman and 

Thierens [16] state that the existing best MOGAs behave similarly or individually 

preferable by different diversity metrics (performance indicator), i.e. Most of MOGAs’ 



17 

performance is problem dependent and may perform better for some problems due to its 

unique diversity metrics. 

There are several techniques reported to avoid premature convergence for EAs, 

such as crowding [16] and random immigrants [17]. Crowding techniques create 

offspring to replace existing individuals based on their similarities [19]. Random 

immigrants bring some entirely new randomly generated elements into the gene pool 

[18]. But the most common one used in GAs is sharing. Sharing distributes non-dominate 

genes over a number of peaks on its Optimal Pareto front. At each iteration, it calculates a 

sharing fitness function, which is related to objectives and how crowded of neighborhood, 

for each individual and picks only a fraction of the population around each peak in 

proportion to height of the peak.  

 Sharing can be performed in objective space or decision parameter space (input 

space). As from the Pareto dominance definition, the Pareto front is defined in objective 

space. Designers like to see the Pareto front well distributed so that they can choose a 

good solution meeting their requirements. However, from a GA’ stand point, diversity in 

the input space is important. If the population is filled with a lot of similar solutions, it 

has a strong tendency to be trapped in a local optimum. Input space diversity affects 

objective space diversity, but the opposite is not sufficient. Horn [53, 54] has suggested a 

sharing technique that combine both spaces called nested sharing. But the way to balance 

two diversity requirements still lacks general procedures.  

The current state-of-the-art evolutionary algorithms in multiobjective evolutionary 

optimization which include the Nondominant Sorting Genetic Algorithm II(NSGA-II) by 

Deb et al. [30], the Strength Pareto Evolutionary Algorithm(SPEA) by Zitzler and Thiele 

[114], the SPEA-II by Zitzler et al. [113], the Pareto Archived Evolution Strategy (PAES) 

by Knowles and Corne [55], have presented different ways to handle diversity. The basic 

idea to keep dominant solutions spreading out is all the same, but each algorithm uses 

different selection and elitism approaches. They are considered as “a Pareto set of 

MOEAs” because each of them has been proved to have good performance on certain 

problems. 

 

2.6.1 Niched sharing example 

 A niche represents a competition for limited resources. In multiobjective GA, 

population size is fixed and it is outnumbered by feasible solutions in the Pareto front. To 
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make sure the final population covers the Pareto front uniformly, niching has to be 

applied to maintain high quality diversity.  

 MOGA [46] has one of the most common used niching sharing scheme. It is a 

fitness sharing method, which degrades the fitness according to the number of similar (in 

input space sense) individuals. Each individual i has its objective fitness fi = f(i) that is 

calculated from its Pareto ranking. Designers need to define a sharing distance shareσ . It is 

a fixed radius threshold for similarity. If two individuals i, j have larger distance d(i,j) 

than shareσ , they won’t affect their sharing fitness each other. A sharing value is defined 

as: 
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where k is a real number determining sharing function shape and is often set to one. 
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where N is the size of the population. The adjusted fitness (shared fitness) of an 

individual i is then given by  
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 shareσ  is a very important factor in above niche sharing scheme. It not only affects 

each individual’s shared fitness, but also affects diversity around the Pareto front. 

Choosing an appropriate shareσ  is an optimization problem itself, which makes it hard to 

apply for general multiobjective optimization. 

 

2.7. Uncertainty 
Real world problems always involve uncertainty. It may come from modeling 

uncertainty and parameter estimation. For example, in designing a vehicle, the weight of 

vehicle varies in different conditions, such as fully loaded and half loaded. It will bring 

uncertainty for vehicle modeling. Optimizing vehicle design has to be done across all the 

conditions. If a design variable has a linear relationship with objectives, optimization can 
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be done in its extreme conditions. But if the relationship is nonlinear, it is hard to estimate 

at what point the variable affects objectives most. 

There are two categories of uncertainty problem in evolution algorithm: 

1. Two successive evaluations of one chromosome return two different sets of objectives. 

2. Two successive evaluations of one chromosome return the same set of objectives. But 

the objectives of any chromosome are not accurate and can be varied in a certain range.  

The first category means that objectives have certain disturbance and have a probability 

distribution at a certain range. Normally, these uncertainty problems are dealed with by 

using objective’s mean and variance. The second category means chromosomes have 

certain disturbance, which results in disturbance in objective functions.  

In engineering design problems, the first case seldom happens. Because when one 

combination of design variables is selected, one physical system is determined and 

system outputs are fixed as well. Only if a system has random signal source, for example, 

one of control variables has a probability distribution, then the system has different 

responses for the same design. Most engineering problems fall into the second case. If the 

system are not modeled accurately or any design parameter is estimated, inaccuracy will 

happen in calculating objectives, which results in drift in objectives. 

This kind of uncertainty makes it difficulty to compare two sets of objectives in 

evolutionary algorithms. Comparisons show that one set of objectives dominates another 

one, but actually it may not better. Several studies have been carried out with comparing 

two uncertain fitness measurements [47, 48]. Objective measurements are treated as 

values with distribution probability. The most common distributions such as uniform and 

normal distribution have been studied. The difficult thing is to know the exact 

distributions of uncertainty.  

In Jin’s survey [50], uncertainties are categorized into four areas: noise, 

robustness, fitness approximation, time-variant fitness functions. In Engineering design 

problems, the second area - robustness is the essential problem we care about. Only a few 

studies have been done to study robustness in multiobjective optimization. Deb [27] 

suggested that robustness can be achieved by optimizing mean effective fitness function, 

which is the average of a set of neighboring solutions. This method will significantly 

increase computation times due to calculating neighboring objective functions, which 

requires running a lot of additional simulation in dynamical modeling and is very time 

consuming. Ray [92] suggested adding robustness to objective functions and it samples a 
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set of neighboring solutions to get the mean and standard deviation, which are added into 

objective functions. This method still uses fitness concept and make it difficult to apply to 

multiobjective optimization problems. Some other research areas dealing with uncertainty 

such as approximate fitness function and dynamic optimization are targeted to dynamic 

fitness function (time variant) problems, which is not the focus of this dissertation. 

 Robust design means system meets requirement in worst case (disturbance). 

Robustness is sometimes conflicting with optimization. To meet consumers’ need, 

designers want to achieve the highest possible optimum with meeting robustness 

requirement. Little research has been conducted to study robust engineering design 

problems using GA. GAs are thought to be capable of finding the robust designs. But this 

is arguable because diversity techniques affect GA converging to robust areas. Moreover, 

the robust areas GA found are not always able to meet designers’ requirement. 

 

2.8 Genetic Algorithms in Engineering Design 
 One of the popular heuristic search algorithms is genetic algorithm. GA not only 

has all heuristic algorithm’s characteristics, but also is a multi-directioned search method. 

It originally is designed for single objective optimization problem since it uses a fitness to 

do evaluation. As GAs are applied to multiobjective optimization, the fitness concept has 

been extended to dominance rank, which is created for searching the Pareto Front. Since 

then, GAs begin to become popular in multiobjective optimization areas, especially in 

finding the Pareto Front.  

 GAs use dominance rank to push the population close to the Pareto Front and it 

has been proved to be an effective way to explore the Pareto Front. One of the difficulties 

in exploring the Pareto Front is the curse of dimension. As dimension of the problem 

increases, the Pareto Front becomes very complicated. GAs tend to be stuck in some local 

Pareto Front areas. To make the optimal solutions well covering the Pareto Front and 

quickly converting to the optimum is what most of research on GAs are focusing on. How 

to balance proximity and diversity in exploration is a multiobjective optimization problem 

itself. 

 There are many studies on diversity preservation, diversity estimation, and metric 

comparison to improve the population diversity. Many different GAs have been presented 

to improve diversity and convergence such as RAND, FFGA, NPGA, HLGA, VEGA, 

NSGA listed in Ziltzler’s paper. There are new research ideas such as co-evolutionary 
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GAs and Clustered Oriented GAs. No matter what GAs are, they are trying to make the 

search converge to the Pareto Front (or close to the Pareto Front) as quick as possible and 

make the population cover the Pareto Front (or close to the Pareto Front) as even as 

possible at the least computation time. Since these goals are conflicting themselves, we 

often find out that any GA is a tradeoff of these goals and it may perform well on some 

certain problems but bad on others. 

 Chapter 4 suggests a new Genetic Algorithm – Complete Dominant GA. It 

loosens the dominance concept and allows a tolerance in comparing two solutions. Its 

idea is very simple and can be easily combined with any existing GAs. The advantage is 

its simplicity doesn’t require any additional computation but preserve diversity in some 

degree and converge to the Pareto Front very well. The most important characteristic is 

that it can be easily to use in searching for robustness.  

 

2.8.1. Engineering design using GAs 

 Since GAs have shown excellent performance in optimization problems, 

especially in multiobjective optimization, engineering design optimization problems have 

been explored with GAs. Engineering design optimization problems normally are multi-

objective problems with high dimensional design variables. They also are complicated in 

that system dynamics are always non-linear and with uncertainty. In addition, engineering 

design problems often have constraints on design variables. All these issues have been 

well addressed in different GAs. 

 As engineering design becomes more and more complex in modern industry, 

computer modeling is one of the essential method to achieve reducing design cycle and 

improve design quality. Genetic algorithms have been used in a lot of complex design 

problems. There have been a number of activities from developing GA software for 

engineering design to improving GAs for engineering design. 

 

2.8.2 Robustness in engineering design 

 Robustness is key to designing products that work in a range of condictions. From 

this aspect, robustness is sometimes in higher priority than optimuality. Engineering 

design has to deal with uncertain environment, manufacturing tolerance and un-modeled 

effects. Real industry problems have shown that uncertainty can result in failure in the 

field. 
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 Previous researches focused on uncertain objective function problems, i.e., 

objective functions will return different values with the same design inputs. The 

techniques used for these problems are to estimate distribution of objective functions. 

These methods have been used to apply to mathematical problems to deal with 

uncertainty. However, this method is limited in that engineering design has to deal with 

uncertain design variables, especially curves. Few researches are oriented for this area at 

present. 

 Chapter 4 proposes a new Complete Dominant Genetic Algorithm to help solve 

robustness problem in engineering design. It is an innovative way to explore robustness 

problem. CDGA will push the GA search to high performance region instead of the 

Pareto Front, so robustness of each solution in high performance region can be explored 

by the help of clustering algorithm. Chapter 5 uses sevearal multiobjective problems to 

present the whole idea and show the robust solution it has found. Further discussion on 

diversity and robustness is provided in details as well. 
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Abstract 

This paper uses genetic algorithms (GA) to explore and optimize a high 

dimensional multiobjective system for brake control. The design goal is to make a 

hydraulic brake system efficient and comfortable for a variety of vehicles. High 

dimensional visualization has been used to visualize the design space and design the 

fitness function. The effectiveness of methods is demonstrated by the brake design 

example. 

 

Keywords: genetic algorithm; data visualization; high dimensional optimization; 

dynamical modeling; 

 
Introduction 

Dynamical modeling provides engineers an accurate way to simulate dynamics of 

complicated systems. The design process often includes design, evaluate, and redesign 

cycles. It can require many repetitions to select a design that performs well under many 

conditions and is feasible to be built. This problem is particularly acute for hydraulic 

systems. Valve performance is often specified using area curves that mathematically 

define an ideal transfer function between the valve input and output flow. In practice, 

these curves cannot be achieved exactly and tolerances must be estimated. The designer 

must also be sure that the control space has been explored thoroughly for different input 

conditions to ensure that there are no regions of unexpected behavior. Intelligent and 

efficient methods to help discover the optimal design and reduce design time are needed.  
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Evolutionary algorithms have been shown to be robust and efficient in finding the 

global minimum (1). Genetic algorithms have been applied to many real-world 

multiobjective problems including control engineering design (10), industrial design (11), 

and transportation planning (12). 

Genetic algorithms normally decide a design whether good or not based on a 

fitness function. In practical design problems, there are often several objectives to be 

satisfied. Normally, there is no complete optimal solution to minimize or maximize all the 

objectives. Instead, people try to find Pareto optimal solutions, a set of solutions that 

cannot improve any objective function without sacrificing at least one of the other 

objective functions (6), and use their own expert knowledge and experience to choose.  

It is difficult to select a suitable fitness function to guide the genetic algorithm. 

There is often no analytical method available to explore the input and output space 

besides looking at simulation results. High dimensional data visualization methods such 

as parallel coordinate plots, tours, and linked plots, available in statistical packages for 

example GGobi, can assist in examining the space (8). Designers are able to pick a good 

solution from the Pareto space with the help of data visualization. 

The system structure is shown in figure 1. Engineers build complicated dynamics 

models for their problems of interest using a dynamical modeling tool such as EASY5 

(13) and Simulink (14). A database is used to store and manage simulation results. GA 

tools with user interface support are connected with the simulation model and database 

directly. Database, GA tools, and visualization are all independent from the simulation 

and can be coupled with other modeling software. Decision-makers use the GA and 

visualization to explore the design space and choose the optimal solution. A hydraulic 

system design project has been used to test the whole system. 
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Figure 1. System structure 
 

Background 

This project uses genetic algorithms to assist design engineers in finding optimal 

designs for a hydraulic brake model. The hydraulic brake design project studies what 

combinations of inputs (such as supply pressure and area curves) result in a comfortable 

and efficient brake system that works on a variety of machine models. For this goal, 

desired response of the brake system has its max deceleration smaller than 0.2~0.3g, its 

max jerk smaller than 1g/s (9), and its velocity change because of deceleration as large as 

possible. System diagram is shown in figure 2.  

The brake system model is shown in figure 3. Brake valve area tables coupled 

with pressure drop across the valve control the flow rate through the brake valve. The 

brake valve has two spools. Each spool has its own two area tables (in/out brake) and 

control flow and pressure to either the front and rear axle. The brake valve feedback 

orifice for each spool controls the brake valve’s response to pressure in the brakes. The 

supply pressure specifies the system inlet pressure to the accumulators and the brake 

valves. 

 

Genetic Algorithms 

Genetics algorithms are optimization techniques inspired from evolution. Based 

on the survival of the fittest strategy, GAs exploit the best solution and explore the search 
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space through genetic operators: selection, mutation, and crossover (3)(4). They have 

been successfully applied to the optimization area (5).  

The genetic algorithm used in this work uses floating point representation, since 

floating point representation is more suitable for multidimensional, high-precision 

numerical problems (5). The genetic operators and parameters for the brake system are 

shown in table 1. 

 
GA type Floating point 
Initial Population 16 
Mutation Non-uniform  
Crossover One point 
Selection Tournament 
Termination 40 generations 
Table 1. Genetic operators and parameters 

 
Gene: 

There are four spool area curves (SP1P2B, SP1B2T, SP2P2B, and SP2B2T) for 

the hydraulic Brake model, each of which controls the flow rate through the brake valve. 

Each area curve is represented by one scalar factor. The other design variables are the size 

of the two orifices in millimeters and the supply pressure in kPa. Each individual has a 

gene with seven variables. Each variable is a real value number representing the scalar of 

the original area curve or the actual value for orifice and pressure. For example, the gene 

(3.5 2 1 3.5 1 1.5 4900) means the first area curve (SP1P2B) is 250% larger than the 

original SP1P2B curve (as in figure 4) and 100%, 0%, 250% larger for other area curves 

respectively. The first orifice size is 1.0 mm, and the second one is 1.5 mm. The supply 

pressure is 4900 kPa.  
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Figure 4. Scalar of original areacurve 
 
 

Crossover: 

The crossover operator uses the traditional one point crossover method (5). This 

method randomly picks a position then interchanges two parents’ genes. For instance, if 

the position two is picked, assuming parents’ genes are (1.0 2.0 3.3 3.5 1 2 5000) and (3.0 

2.9 1.5 1.7 2 1 7000), the children’s genes will be (1.0 2.0 1.5 1.7 2 1 7000) and (3.0 2.9 

3.3 3.5 1 2 5000) after crossover. 
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Figure 3. Brake system schematic 
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The mutation operator used in the project is the non-uniformly mutation method 

(5). It randomly picks a variable in the gene, j, and sets it equal to non-uniformly random 

number: 

 xi
’ = xi + (bi - xi)*f(G) if r< 0.5, 

 xi
’ = xi - (xi - ai)*f(G) if r>= 0.5, 

Where  

 f(G) = r2(1-G/Gmax) 

r2, r1 = a uniform random number between   (0,1), 

 ai, bi = the low and high boundary. 

 G = the current generation 

Gmax = the maximum number of generations 

 

Initialization: 

The initial population is 16. Possible parameters are randomly picked from the 

database of the previous simulation runs. The population size is stable at 16 for each 

generation. 

 

Selection:  

The genetic algorithm uses the tournament selection method to select the next 

generation. It randomly picks two individuals as parents from the current generation and 

two children are generated by crossover and mutation. Each individual is evaluated by a 

fitness function. Only the best two will be selected from each family. For instance, two 

parents A and B have fitness 1.0 and 0.8 respectively, and two children C and D have 

fitness 2.0 and 0.5 respectively. Only A and C will be selected for the next generation. 

 

Termination: 

The simulation stops when the user-defined tolerance has been met or the 

maximum number of generation is reached. The tolerance is how much the average 

fitness increases comparing to the last generation (0.01 in the experiment). The maximum 

generation is how many generations are allowed. 

Fitness function: 

The fitness function for the brake model can be separated into three parts: 

deceleration, jerk, and stopping ability, which is represented by the area of deceleration 
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time response. The ideal deceleration response is smaller than 0.2g, which makes the 

driver feel comfortable. The ideal jerk response is as small as possible. The ideal stopping 

ability is as high as possible. The final fitness is the sum of all three parts for four 

different vehicles. Equations for each part are listed as follows: 

)a2.0(*10f 1i −=  a<0.2 g 

)2.0a(*5f 1i −=    Otherwise 

J1*)J1(*5f 2i −−=   

V*10f 3i Δ=  

)fff(fitness 3i2i

4

i
1i ++= ∑  

Where  

 a = deceleration peak (g) 

 J = jerk peak (g/s)  

 ΔV = area of deceleration response (m/s) 

 i = vehicle type 

 

 

Simulation Results: 

The simulation stops after 40 generations. The final population converges to some 

certain areas of the control space. The average fitness increased from –10.21 to 2.9. As 

shown in figures 5 and 6, the high fitness response has lower jerk peak by 30% and larger 

area of deceleration time series curves by 14% which means that it stopped faster.  

Figure 5. Comparison of  responses of low fitness and high fitness 
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Figure 6. Comparison of jerk responses of low fitness and high fitness 
 

Visualization can then be used to explore the design input space by linking input 

space with the fitness. By choosing a high fitness area, see in figure 7, users can examine 

the combinations of input parameters that correspond to these values. The highlighted 

combinations of inputs are as follows: mid-range BV1P2B and BV2P2B, low-value 

BV1B2T, two orifices, and Psupply, high-value BV2B2T. Some variables such as 

BV1B2T and BV2B2T have wider range choices. It suggests that they are less sensitive 

than other variables. Physically it is because they are variables controlling fluid flow from 

brake valves to tank, which are less important than variables controlling fluid flow from 

pump to brake. Now it is also a good idea to look at the multiple outputs that constitute 

the fitness value. It is common that not all the objectives can be satisfied at the same time. 

The values of the objectives that correspond to overall high fitness can be displayed in 

several windows (figure 8). Each window contains information of jerk and acceleration 

for one vehicle type. With an optimal design gotten by GA, the first, third, and fourth 

types of vehicles all have low jerks and acceptable high accelerations (highlighted 

points). But vehicle two has a relatively high jerk and low acceleration. If the jerk in 

vehicle model 2 is needed to reduce, other vehicle models’ performance have to be 

sacrificed. 
 



31 

 

 
 

Figure 7. Explore input space while brushing fitness 
 
 
 

A similar process could be used to choose good fitness functions. Several different 

fitness functions could be computed, and their values could be examined in relation to the 

output space. The fitness function can be chosen by matching the best fitness values with 

the best values in the objective space. Design experts have some intuition in picking an 

optimal space that optimizes and balances multi-objectives of physical system. 
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Figure 8. Exploring output space and visualizing multiple objectives 

Conclusions and Discussions 

The paper presents a general process to solve multiobjective optimization 

problems, particularly engineering problems with dynamical modeling. GAs are used to 

search the high dimensional space and find the optimal solution. High dimensional 

visualization, such as available in GGobi, is ideal for exploring input and output space to 

understand the relationship of input and output variables, understand relationship of 

multiple objectives, and design the fitness function to guide GAs. With these two tools 

and engineers’ expert knowledge, designers may be able to arrive at optimal solutions 
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quickly and correctly. This approach can be applied to many practical design problems 

and is demonstrated here by the brake control application. 

In the paper, multi-objective functions have been combined into one fitness 

function using weighting coefficients. Other available approaches in multi-objective 

genetic algorithms (15) (16) are to locate Pareto-optimal solutions without defining a 

fitness function. It often requires extensively exploration in the input space, and thus 

needs larger population size and generation iteration. Dynamical modeling needs several 

minutes’ computing time or even more, depending on model complexity and time step, to 

finish each individual run. The whole GA optimization process might take weeks’ time. 

However, GA parallel feature may make multi-objective genetic algorithm applicable to 

dynamical modeling with parallel computing technology. Future research on this area is 

needed. 
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CHAPTER 4. COMPLETELY DOMINANT GENETIC 
ALGORITHMS 

 
4.1 Introduction 

Practical physical dynamical systems are nonlinear and complex. System behavior 

is difficult to fully understand using traditional mathematical analysis due to 

nonlinearities and uncertainties. Designers often construct detailed dynamical models to 

simulate system dynamics and try to vary several design variables to assess the system 

response. For any changes in different variables, the system response needs to be checked 

by running detailed simulations. This process can be quite time consuming to find a 

satisfactory solution for a high dimensional problem. Moreover, a local search has to be 

performed to make sure that the solution meets robustness requirement. 

 Genetic Algorithms (GAs), developed by Holland [1], are inspired by natural 

selection and survival of the fittest. GAs are powerful and robust stochastic search and 

optimization techniques, which have been applied to many engineering and mathematical 

areas such as engineering design [2, 3] and stock investment [5]. GAs can solve complex 

problems that are difficult to solve with conventional techniques, such as gradient 

approximation methods. In addition, they can help automate search process to find a 

satisfactory design variable combination without completely understanding interactions 

between input and output. 

 For a single objective optimization problem, the optimum is the minimum or 

maximum of the objective function. Real-world problems often have several criteria that 

sometimes conflict.  The optimality of multiobjective optimization is defined as Pareto 

optimality [4]. Dominance is an essential concept in Pareto optimality. If a solution A is 

said to dominate another solution B, it means that all of A’s objectives are better satisfied 

than B’s. The set of non-dominant solutions among all possible solutions is called the 

Pareto front. The goal of multiobjective optimization is to find a trade-off solution on the 

Pareto front. Several techniques, such as Pareto ranking and using a weighted-sum 

function, have been used to solve multiobjective problems [6-7]. Cvetkovic and Parmee 

have presented several multiobjective optimization methods using in engineering 

evolutionary design [18, 19].  
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There are two main directions for solving multiobjective problems using GAs: 1. 

Converting multiple objectives to a single objective; 2. Using Pareto domination ideas. In 

the first case, the algorithm is designed to make the population converge to a global 

optimum. It may represent one point in the Pareto Front. Designers also need to map 

objectives to a single fitness function. Parmee has applied the weighted sum method into 

many engineering design preliminary studies [18, 23]. In the second case, the population 

tends to converge to the Pareto-optimal front. The solutions on the Pareto-optimal front 

are non-dominated. One of problems using Pareto dominant selection is that non-

dominant solutions will increase dramatically as process goes on. Without diversity 

control, population will often be trapped into local Pareto fronts. Therefore, several GAs, 

such as Reduced Pareto Set GA [8], Diversity Control Oriented GA [11], keep the 

diversity of the population well distributed to cover the whole Pareto front space. 

Crowding and Niche sharing have been used to keep diversity in the population [26].  

Parmee has proposed Cluster Oriented GA (COGA) to help engineer do 

preliminary study [24, 25]. The basic idea is to help GAs converge to high performance 

(HP) areas quickly, which is defined as an area close to the Pareto front. The high 

performance clusters can help design engineer further understand system such as input 

and output interactions and design variables sensitivity. COGA uses a variable mutation 

rate to allow diversity in the final stage so that it can formulate high performance clusters. 

In order to prevent low fitness solutions from falling into clusters, filters have to be used 

in evolutionary process. Filters’ functionality is to use a threshold to manage clusters. 

COGA has been used in many real engineer design problems [24, 25].  

 COGA’s high performance concept is exceedingly practical in engineering study. 

Engineering design needs to consider many other side factors, such as cost and 

robustness. A quick way to identify HP areas is helpful to further investigate designs with 

other factors in mind. COGA uses adaptive filters to direct evolution to HP area. The way 

to calculate threshold for adaptive filters has many variations and is problem dependent.  

Adaptive filters still use the fitness idea, which limits its ability in solving multiobjective 

problems. 

 This paper proposes a new genetic algorithm method called Completely Dominant 

Genetic Algorithm to achieve convergence to HP areas. It is intuitive to multiobjective 

domain because it is based on objective space without mapping them to single fitness 

function. It relaxes the dominance condition in selection process to allow the genetic 



37 

algorithm to explore high performance areas and help to find the robust solution. Detailed 

description and discussion are presented in the following sections. 

 

4.2 Mathematical Preliminaries 
This section gives the mathematical formulation for multiobjective optimization 

problems and necessary definitions that are used in this paper. 

Multiobjective Optimization Problem:Vector X∈x where X is a subspace of Rn, 

objective function ))x(,),x(),x(((x) kfff K21=f ∈  Rk. The goal is to minimize 

function (x)f , i.e. minimize all )x(kf functions, with X∈x . For multiobjective problems, 

k and n are larger than 1. Each )(xif is assumed to be a continuous function. 

 

Robust design: A robust system satisfies the objective specifications for all perturbed 

cases about the original model up to the worst-case perturbation [12].  

 

Pareto Dominance: For two vectors A= ],...,,[ naaa 21 , B= ],...,,[ nbbb 21  in Rn space, if ∀ i, 

ii ba < , then A is Pareto dominant to B [9]. 

 

Complete Pareto Dominance: For two vector A, B in Rn space, given a positive tolerance 

value ε, let vector C = ),,,( εεε K , a hypercube in n dimension. If A is Pareto dominant to 

B – C (+ for maximization), we call A is completely dominant to B with respect to ε. 

 

4.2.1 Description 

Figures 1 (a) and (b) illustrate a two dimensional (x1, x2) optimization problem 

with two objectives (f1, f2). Figure 1a shows two possible solutions, A and B, which are 

close to the Pareto-optimal front [12]. They are non-dominant with respect to each other.  

Assuming that, decision-makers have to make a choice between two with robust 

consideration. In this case, the corresponding input space of solution B has a larger space 

than the space of the solution A given the same tolerance (Figure 1b), i.e. the solution B 

has larger tolerance for uncertainties than A does. Therefore, the solution B is considered 

more robust than A. 



38 

The ideal design procedure is to first pick a HP space, which is close to the Pareto 

optimal front, and then pick several good solutions from this space and evaluate them 

with respect to robustness. The key step is locating the HP space. Robustness can be 

checked by local search in HP space. Our idea is to relax selection pressure in some 

degree to allow diversity in population and also push the evolution process going to the 

Pareto Front space.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2 Fuzzy fitness function 
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b) Input space of the example for 
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Figure 4 HP space using Complete Pareto 

 Domination    Figure 3 HP space using the fuzzy fitness function 

 

 There are two possible selection methods that meet the requirements: fuzzy 

objective functions and complete Pareto domination. The fuzzy function is a mapping 

from an objective function to a satisfaction function. fu represents an unsatisfied value for 

a particular objective, while fs is the satisfied value (Figure 2). The goal is to minimize all 

objectives so as to maximize the minimum membership function for all objectives. In 

figure 3, the input space between f1s and f2s is considered to contain satisfactory solutions. 

Adding some fuzzy penalty terms, i.e. p=Σwjfj, can reduce the size of the subspace, as 

shown by the shaded area in Figure 3. From the genetic algorithm viewpoint, all of the 

populations in the shaded area have the same fitness. An elite pool is used to store all the 

individuals falling into this area, which is considered as HP region, and individuals with 

the same fitness are selected with equal probability.  

 Using fuzzy logic allows the GA solutions to converge to the satisfied objective 

areas. However, the search space expands as problem dimensionality increases. The ideal 

objective space includes all areas close to the Pareto-optimal front. Using the completely 

dominant concept ensures that the solution can converge to these areas. If A is not 

completely dominant to B, the solutions are considered the same.  The consequence of 

this selection is that all the values in the shaded area of Figure 4 are considered as HP 

area. 
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The elite pool generated by the modified GA contains all the individuals with 

objectives in the HP space. Further local search and exploration in HP area can determine 

solution’s robustness and other features. 

 

4.3 Engineering Multiobjective Optimization 
A lot of researches have been conducted to develop multiobjective optimization 

methods. Genetic algorithms are one of appearing algorithms in Pareto optimization. 

Engineering design encounters numerous multiobjective optimization problems in the 

process of designing products. Multiobjective Genetic algorithms have been applied to 

many engineering design areas [11, 30]. 

Engineering multiobjective design problems have their own characteristics that 

differ from general multiobjective optimization problems. First of all, complex system 

design is not a simple straightforward problem. Design variables and objectives are not 

well defined sometimes in preliminary design stage. Parmee has suggested using Cluster-

Orient GA to locate High Performance areas for preliminary design. Designers have more 

interests in exploring High Performance areas and find interactions between design 

variables and objectives than finding optimal solutions in this stage. Designers want to 

explore interactions of design variables and objectives and sensitivity of design variables. 

Therefore, multiobjective optimization is desired to explore search space well especially 

in High Performance areas. 

 Second, engineering design problems have critical concerns on robustness. Due to 

manufacturing tolerance and volatile working environment, there are a lot of uncertain 

factors affecting complex system. Design variables could have disturbance and objectives 

could be not calculated accurately. For engineering design, most of designs are done on 

the computer by simulation models. Design engineers have to make sure the final product 

meet robustness requirement in simulation phase. It requires that multiobjective 

optimization has to consider robustness besides optimization. 

 Diversity and robustness of multiobjective optimization results are two basic 

concerns to engineering design multiobjective optimization. To apply GA in 

multiobjective algorithm, GAs have to consider these two factors in order to meet 

optimization goal. Previous researches have proposed various types of ideas to preserve 

population diversity in evolutionary process and find the most robust solutions. This 
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chapter will review previous research results and discuss completely dominant GA’s 

performance on diversity and robustness. 

 

4.3.1 Diversity 

One of multiobjective genetic algorithm optimization difficulties is keeping 

diversity of population. The Pareto Front is a hyperplane in the same dimension of 

number of objectives. As dimensions increase, the non-dominated solutions in the 

population will increase exponentially. However, most of genetic algorithms are keeping 

population size stable, i.e. consistent number of children will be produced for each 

generation. Non-dominated solutions will quickly take control of the population. Without 

diversity control, non-dominated solutions possibly only cover a small part of the Pareto 

front.  

 General requirements for a good multiobjective genetic algorithm are as follows: 

1. directing the population towards the Pareto Front; 2. maintaining the diverse non-

dominated set; 3. preventing from losing non-dominant solutions. These three 

requirements are also representing the developing history of multiobjective algorithms. At 

the first stage, multiobjective genetic algorithms are using fitness assignment to find the 

Pareto Front. Pareto ranking is the primary technique for multiobjective optimization. At 

the second stage, more and more researchers realized the importance of diversity in 

multiobjective optimization. Among numerous diversity techniques, niche sharing is the 

most popular one that many multiobjective genetic algorithms use. Elitist selection is 

added into multiobjective optimization at the third stage. 

 Multiobjective Genetic Algorithm’s performance can be measured by two criteria: 

convergence and diversity. Convergence test is measuring how close non-dominated 

population is approaching the Pareto Front. Diversity test is measuring how non-

dominated set distributes compared with uniformly distribution. As Deb [27] proposed, 

these two criteria can be measured by two metrics. The convergence metric is defined as γ 

metric. It is assuming the Pareto Front is known. N uniformly distributed points from the 

Pareto Front are picked. For each point, the smallest Euclidean distance to GA population 

is found. The sum of all distances is the γ metric. Even if every non-dominant point is 

located on the Pareto Front, the metric is not zero. Only if when non-dominant points are 

uniformly distributed on the Pareto Front, the metric will be zero. It can measure diversity 

along the Pareto Front in some degree. 
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  Diversity Δ metric is defined as the following: 
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This metric is best to apply to two-objective Pareto Front. Df and Dl are the minimum 

distance of non-dominant sets to two extreme points on the Pareto Front. All N non-

dominant points are sorted continuously along the Pareto Front. d is the average distance 

of N-1 consecutive distance of non-dominant points. When the distribution is exactly 

uniform, the numerator will be zero. In other cases, the metric is always positive and can 

be over one. Small Δ metric value normally represents that distribution is close to uniform.  

 

4.3.2 Robustness 

Except convergence and diversity, robustness is also an important factor deciding 

the performance of GA. For engineering design, there always are uncertainties due to 

manufacturing tolerance and uncertain operating environment. Design variables may have 

variations in reality to some extent, while they are fixed in modeling. Any variations may 

affect system performance (objectives). Robustness can be viewed as sensitivity of 

variables around optimal areas. Considering two sets of design (Figure 5), design A and B 

have the same optimality, but design A is less sensitive to design variable. Clearly, 

designer wants to pick the design A due to its robustness. 
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Figure 5 Example of Optimality vs. Robustness 

 

Previous approaches to deal with noise and uncertainty in GAs include using 

perturbed objective functions [9], averaging objectives or modeling uncertainty as a 

Gaussian noise [10]. Uncertainties for GA can be characterized into two categories. 1. 

The same design combination can have different objectives because of uncertain 

objective functions; 2. The same design combination has the same objectives, but design 

variables have variations. In Anderson’s dissertation, three approaches to deal with 

robustness in Hydraulic system design have been explored. The first method is to use 

disturbing design variables. If some design variables have disturbance, objectives or 

characteristics of system are affected correspondingly. The idea is generating the actual 

value of design variable based on the distribution for each evaluation. That means for the 

same design combination, due to disturbance of one design variable, it has to be 

reevaluated in future generations and can get different objective values.  

 The second method is to use design of experiment described in Anderson’s paper. 

The basic idea is using regression analysis to find out the polynomial function between 

objectives and controlled factors and uncontrolled factors. The influence of controlled 

factors and uncontrolled factors can be estimated through evaluation of objective 

disturbance. This approach is taken after optimization process. It is actually a post-

exploration of optimum. It won’t help optimization algorithm to locate robust optimal 

areas in search progress. 
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The third method is called metamodel. It uses a second order polynomial without 

cross term to model objective function in terms of design variables. By studying 

coefficients of the polynomial, the robustness for each solution can be estimated. It can 

give a whole picture of interaction between design variables and objectives. The 

disadvantage is that fitting for the second polynomial function is hard for high 

dimensional nonlinear system and estimation could be far away the actual system. 

 In the dynamical modeling design problem, uncertainty characteristics are often 

unknown since they may come from modeling inaccuracies and/or manufacturing 

tolerances. Until the actual product is produced, changes in manufacturing and the 

difference between the actual product and the dynamical model are unknown. If using the 

distribution approach, it applies that the actual product still has possibility to fail to meet 

requirement, even though the possibility can be very small. Any product failure could 

bring financial suffer and damage to company’s reputation. In engineering design area, 

any worst perturbation has to be respectably considered. 

 For most of engineering design problems, robustness is the first priority over 

optimality. Designers are willing to sacrifice certain degree optimality to achieve system 

robustness over perturbation. Transferring to multiobjective optimization problems, it is 

equal to allow that the final solution is not exactly on the Pareto Front in order to meet 

robustness requirement. It is hard to make quantitative decision about how much 

optimality will be sacrificed and how robust is needed to achieve. Measurement for 

robustness has to been established for robustness comparison.  

 A robust system satisfies the objective specifications for all perturbed cases about 

the original model up to the worst-case perturbation [12]. This concept is borrowing from 

control system design. There are many similarities between controller design and 

engineer design. The measure of robustness is defined as follows: Given a tolerance ε for 

objectives, the robustness is measured by the biggest perturbation δ allowed. Given a 

positive ε, max <−+ |)f(x))Δf(x(| na ε, for any nΔ and ∈a (-δ, δ), vector X∈x . Δn is a 

vector in Rn space and its H∞ norm [12] is less than 1. The measure of robustness is 

determined by the original state x, i.e. design variables, and the given tolerance ε.  
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4.3.3 Clustering for robustness 

From the definition of robustness, the measure of robustness is determined by δ. 

In reality, δ is not easy to be found accurately. One of the common ways is using local 

search to find robustness. The idea is to explore the neighboring area in the input space of 

a solution and find its minimum distance to over the tolerance. Local search is very time-

consuming, because it has to be performed on each good solution. For high dimension 

engineering design problems, numerous solutions exist in High Performance area. If each 

solution needs a local search, it is going to take tremendous time, considering that each 

neighboring combination requires a simulation to get results for engineering design.  

 The alternative way to compare robustness is to estimate robustness metric based 

on the existing solutions without additional simulations. It is based on the assumption that 

existing solutions have the same robustness characteristic as all solutions. Clearly, this 

way is much easier due to no additional simulation. It generally transfers robustness 

issues to a clustering problem. If a cluster with the largest size is found in existing 

solutions with respect to a tolerance, the cluster center will be considered as the most 

robust solutions. It is a simple search problem comparing with calculating robustness 

metric for every solution. 

 Even for complex multiobjective optimization problems, the clustering method is 

not going to take too long to process, because design engineers are only interested in 

solutions in High Performance area. The clustering is only needed to be performed for 

those solutions. The general clustering procedure is as follows: 

1. Find the Pareto Front of all solutions 

No matter what Heuristic optimization search techniques are using, a lot of 

simulation results will be generated. Among them, non-dominant solutions form 

the Pareto Front. This may be different from the actual Pareto Front. However, 

simulation results in this set have to be considered as the optimum solutions, since 

they are the best solution found. 

 

2. Find the High Performance area 

The high Performance area concept comes from Clustering Orient Genetic 

Algorithm (COGA). It is particularly useful for Engineering Preliminary study. Its 

original definition is to use a filter to put high performance solutions into 

populations during genetic algorithm process. In COGA, HP area is defined as an 
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area close to the Pareto front. Given a vector with the same dimension as 

objectives, each value in the vector is the tolerance for that dimension’s objective, 

and the tolerance for each dimension can be different with each other. The 

objectives of all can be scaled in each dimension so that the tolerance for each 

objective is the same. However, design engineers are more interested in 

robustness in design space. The scaling should be done in the input space based on 

robustness requirement. For example, the disturbance distance for design variable 

A is 0.1 and distance for B is 0.2. The design variable A should scale 2 times to 

get the same disturbance as B. In this way, the largest hypercube cluster that can 

be found is the most robust area. If a design variable has no disturbance, it will not 

be considered in hypercube.  

 

3. Reduce solutions outside of HP area 

The way to finding clusters is to check all clusters formed by every solution as a 

cluster center. In the actual coding, every solution has to search all solutions to 

find its maximum distance in given by certain tolerance vector. Solutions in 

objective space that are too far away from HP area are not necessarily needed to 

consider because their distance to solutions in HP exceed tolerance vector. 

Therefore, solutions that are two times tolerance distance away from the Pareto 

Front do not need to be included in cluster searching. This will reduce a lot of 

unnecessary searches during the searching process. 

 

4. Search the biggest cluster for each solution in HP area 

After reducing solutions outside of HP areas, searching cluster process will be 

much more improved. The goal is to find the cluster size for each solution based 

on tolerance. The search process is that for each solution, finding the biggest 

hypercube in which all solutions’ objectives are in the tolerance range of the 

solution. The cluster metric is defined as the maximum distance to the centroid for 

any point in the cluster. The distance metric is using L1-norm metric. 

 

5. Compare cluster size 

When clusters for all solutions in HP area have been found, the most robust 

cluster is needed to be picked from them. There are two ways to compare clusters: 
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by cluster size and by number of solutions. Experiments show that these two 

methods often match each other. When two methods don’t match, one of possible 

reason is that GA doesn’t cover the Pareto Front very well. This results in that an 

uncrowded area possibly has a bigger cluster size just due to fewer solutions in 

this area. Using the second method increases the confidence level on robustness. 

Because even though solutions in HP are not evenly distributed, the cluster has 

been checked with the most number of solutions. The cluster size found by this 

method is most likely able to be guaranteed to match with the actual one. 

Pseudo code for clustering: 

1) Loading Data 

2) Finding the dominant objectives 

FOR i=1 to data row size 

 FOR j=i+1 to data row size 

 Compare objectives[i] with objectives[j] 

            END FOR 

IF objectives[i] is NOT dominant by any other objective set 

 Objectives[i] belong to the dominant set 

End IF 

END FOR 

3) Finding the High Performance Area and NON-HP area 

FOR i=1 to data row size 

 FOR all dominant data sets 

 Compare objectives[i] with objectives[j] 

IF objectives[i] is within tolerance distance to any dominant data set 

  Objectives[i] belong to the High Performance set 

  BREAK 

End IF 

 END FOR 

END FOR 

4) Finding the largest cluster 

FOR i=1 to High Performance Area data size 

 FOR j=1 to NON-HP data size 

 Compare objectives[i] with objectives[j] 
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IF objectives[i] is within tolerance distance to any dominant data set 

  Objectives[i] belong to the High Performance set 

  BREAK 

End IF 

 END FOR 

END FOR 

 FOR all data sets in High Performance Area 

  Find the size of cluster  

 END FOR 

 

Example 
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Characteristics of Example Problem  

The example is a simple two objective optimization problem with five parameters. 

Variables x2, x3, x4, x5 only affect the objective function, f1. In order to minimize f1, g(x2) 

should be equal to 1-g(x1) and x3, x4, x5 should be zeros. The Pareto front is easy to 

calculate and is shown in Figure 6a. g(x) is a continuous, nonlinear function. It is 

designed such that it is less sensitive in the 0.2 to 0.4 range. Therefore, the objective 

function is robust when x1 and x2 ∈  [0.2 0.4] (Figure 6).  
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Figure 6a robust area and Pareto-front optimum Figure 6b robust design in input 

space 

 

This example has a very simple Pareto front and has a clear robust design area. If 

robustness is the priority of the optimization problem, the optimum could be sacrificed a 

little to achieve robustness. Assume the shaded area in objective space is acceptable to 

designers. Our question is that if we can use genetic algorithm to find not only Pareto-

optimal front, but also detect this robust area. 

In this section, several genetic algorithms with Pareto fitness function have been 

applied to this problem. The only difference between them is how they assign fitness and 

select the next generation. The genetic operators and parameters are listed in table 1. The 

non-uniform mutation method selects one variable randomly and sets it equal to a 

uniform random number generated from a range decreasing with generation [14, 16]. A 

clustering algorithm is used to find the robust design in GA results. The robust design has 

the most neighborhood points around it. The objective functions of any its neighborhood 

points are within the tolerance of objectives of the robust design point. The tolerance used 

is [0.5 0.5] for two objectives respectively. 

 

Table 1 Genetic operators and parameters 
GA type Floating point 
Initial Population 64 
Mutation Non-uniform  
Crossover One point 
Selection Tournament 
Termination 50 generations 
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(1) Pareto Multiobjective Optimization 

 The selection for the Pareto multiobjective GAs is the Pareto dominance. If gene 

A dominates another gene B, A’s fitness is high than B’s.  Figure 7 shows only the Pareto 

multiobjective GA results that fall into the accepted area. The most robust point found by 

the clustering algorithm is [0.015 0.616 0.147 0.0641 0.063]. It is not in the theoretical 

robust area, since x1 and x2 do not fall into the [0.2 0.4] range. The Pareto genetic 

algorithm doesn’t use diversity technique such as crowding and sharing. The reason for 

this is to compare with the completely dominant Pareto GA for the same conditions. 

These techniques prevent the search from getting stuck in a local minimum. 

 

Figure 7 Objective results of the Pareto GA 

 

(2) Fuzzy Fitness Functions 

Using the fuzzy fitness function defined in figure 2, the satisfied values for f1 and f2 are 

set to 0.75 and the satisfied sum of f1 and f2 (Σfj ) is set to 1. The most robust point found 

by the fuzzy fitness GA is in the theoretical robust area (Figure 8). The corresponding x is 

[0.336 0.364 0.002 0.032 0.009], which is in the robust area. 
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Figure 8 Objective results of the fuzzy fitness GA 

 

 

4.4 Completely dominant GA 
 The tolerance in the complete Pareto dominance is set to [0.5 0.5]. If gene A’s 

objectives is Pareto dominant to gene B’s objectives minus the tolerance, gene A is 

completely dominant to gene B so that gene A’s fitness is better than gene B. Using the 

completely dominant Pareto space, the most robust point that completely dominant Pareto 

GA found is in the theoretical robust area (Figure 9). The corresponding x is [0.300 0.336 

0.081 0.061 0015], which is exactly in the robust area. 

 The robust area in design space found by clustering method is shown in Figure 10. 

It only plots the design space in x1 and x2 dimension and x3-x5 are very close to zero for 

high performance area due to the characteristics of the problem. It is clear that the robust 

area CDGA found is located in HP area and has no overlapping with the Non-HP area. 

The robust are is the biggest existing cluster that we can find at such tolerance of 

objectives. If we change the objective tolerance, i.e., the definition for HP area, the robust 

cluster will be changed. Similarly, if we choose other solutions as our robust solution, the 

cluster size will not be the largest. Of course, designers can re-modify their requirements 

for HP area and tolerance for each design variable so that they can get better optimization 

results. But cluster size may be changed accordingly. 
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Figure 9 Objective results of the completely dominant Pareto GA 
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 Figure 10 Robust Design Area in Design Space using CDGA 
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 Table 2 Comparison of GA performance 

γ metric Δ metric Algorithm 

Mean Variance Mean Variance 

GA real-coded 0.037 0.011 0.77 0.010 

CDGA 0.025 0.002 0.60 0.05 
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Table 2 shows γ and Δ metric results for real-coded Pareto GA and CDGA. CDGA has a 

better performance on γ metric (p<0.01).. The variance is very small for CDGA, which 

implies that CDGA’s convergence performance is consistent.  

 From the simulation, both the fuzzy fitness GA and the completely dominant 

Pareto GA were able to locate the robust area and find the robust optimal solution, while 

the weighted-sum and common Pareto GA failed for the first example. However, the 

fuzzy fitness function requires that designers are knowledgeable about the system to 

design a suitable fitness function. It is arguable that designers could have run a number of 

simulations to become familiar with the system. The main problem that fuzzy fitness will 

face is a larger objective space to search, which increases with problem dimensionality.   

The completely dominant Pareto GA can successfully find robust regions and can reduce 

the search space. It is intuitively appealing to designers. Designers can have a clear 

picture about the range of objectives of the final design.  

 Conventional GAs using weighted sum and Pareto multiobjective methods failed 

to find the robust area, because these algorithms are designed to converge to the high 

fitness area or Pareto front. To meet designers’ robustness criteria, neighborhood of each 

solution has to be explored until a robust solution is found. This requires a lot of 

additional work and is very difficult to find the most robust solution in practice. In the 

completely dominant definition, we can extend the vector [ε, ε,…, ε] to a more general 

vector [ε1, ε2, …, εn]. That means we can have different tolerances for different objectives. 

4.5 Conclusion 
 In this chapter, we have presented the completely dominant Pareto method 

selection method for genetic algorithms. This method relaxes dominance condition so as 

to relax comparison selection condition. Several genetic algorithms with other selection 

methods have been compared with the completely dominant Pareto method for a simple 

two objective problem. The results show completely dominant Pareto GA makes 

population quickly convergent to HP areas and keep population well distributed at HP 

areas. CDGA is proved to be able to help locate the robust solution in HP areas. It is also 

an easily implemented general algorithm that does not require much preliminary 

knowledge. It is quite possible to combine fuzzy fitness idea with completely dominant 

Pareto GA to further cut HP search areas. Further research on applying this technique on 

constraints and other co-evolutionary algorithms could extend its applicability. 
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CHAPTER 5. DIVERSITY AND ROBUSTNESS IN 
MULTIOBJECTIVE OPTIMIZATION 

 
5.1 Engineering Multiobjective Optimization 
 Chapter 4 proposed a new Genetic Algorithm – CDGA and used a simple two 

objective optimization problem to show CDGA’s performance on convergence, diversity 

and robustness. This chapter accesses robustness and diversity performance of CDGA via 

simulation studies. Three more examples will be presented to do some deep analysis. One 

of them is a standard multiobjective optimization testing problem and has been applied to 

different GAs to compare GAs’ performance. The second one is an engineering design 

problem with robustness concern.  The third one is the brake system design presented in 

chapter 3.  

  The example in chapter 4 is specially designed to demonstrate CDGA’s 

performance on convergence and robustness. This chapter focuses on comparison 

between CDGA and other GAs and robustness problems met in real engineering design 

problems. Detailed analysis is provided to demonstrate CDGA’s performance. 

 

5.2 Examples 
5.2.1 Example 1 – T6 Problem 

 To minimize two objective functions f when xi belong to [0 1], i = 1, …, m. The 

test function and some empirical results are presented in [21, 22]. 

f1(x1) = 1-exp(-4x1)sin6(6πx1) 

f2(x) =  g(x2, …, xm)h(f1(x1), x2, …, xm) 

where 

 g(x2, …, xm) = 1+ 9*((∑
m

ix
2

)/(m-1)0.25 

 h(f1(x1), x2, …, xm) = 1 – (f1/g)2 

 m=10 
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Characteristics of Example Problem  

The example is a simple two objective optimization problem with ten parameters. 

Variables x2, …, xm only affect the objective function f2. The Pareto front is non-convex 

and formed with g(x) = 1. This test problem has been used for comparison of different 

evolutionary algorithms due to its two difficulties. One is that it has a nonuniformly 

distributed Pareto Front (it is biased where f1 is close to 1). The other is that density of 

solutions is lowest closest to the Pareto Front [22].  

 

Genetic Algorithms 

A multiobjective genetic algorithm with three different fitness functions has been 

applied to this problem. The only difference between them is how they assign fitness and 

select the next generation. The genetic operators and parameters are listed in table 1. The 

non-uniform mutation method selects one variable randomly and sets it equal to a 

uniform random number generated from a range decreasing with generation [14, 16].  

 

Table 1 Genetic operators and parameters 

GA type Floating point 
Initial Population 100 
Mutation Non-uniform  
Crossover One point 
Selection Tournament 
Termination 250 generations 

 

(1) Pareto Multiobjective Optimization 

 The selection for the Pareto multiobjective GAs is the Pareto dominance. If gene 

A dominates another gene B, A’s fitness is high than B’s.  Figure 1 shows only the Pareto 

multiobjective GA results that fall into the area where f2<1.6. Only a few results are 

located at the Pareto front or close to the Pareto front. The Pareto genetic algorithm 

doesn’t use diversity technique such as crowding and sharing. The reason for this is to 

compare with the completely dominant Pareto GA for the same conditions.  
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Figure 1 Objective results of the Pareto GA 

 

(2) Fuzzy Fitness Functions 

Using the fuzzy fitness function defined in figure 2, the satisfied values for f1 and f2 are 

set to 1 and 1.2 respectively and the satisfied weighted sum of f1 and f2 (f1 + 0.8 f2) is set 

to 1.2. This fitness function is chosen based on preknowledge of the Pareto Front so that it 

is designed to drive the search to the Pareto Front and not lose much diversity. Figure 2 

shows the GA results that fall into the satisfied fuzzy region. More solutions are found at 

the Pareto front than Pareto GA. However, the whole HP area is not well distributed.  
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Figure 2 Objective results of the fuzzy fitness GA 
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(3) Completely Dominant Pareto space 

The tolerance in the complete Pareto dominance is set to [0.1 0.1]. If gene A’s objectives 

is Pareto dominant to gene B’s objectives minus the tolerance, gene A is completely 

dominant to gene B so that gene A’s fitness is better than gene B. More population are 

falling into f2 < 1.5 areas than Pareto GA’s (figure 3). The population along the Pareto 

front distributes well. The whole population shows an excellent convergence and 

diversity. Diversity and convergence measures are shown in the following section. 
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Figure 3 Objective results of the completely dominant Pareto GA 

 

Discussion 

 Simulation has been repeated five times for each case and similar results appear. 

From the simulation, both the fuzzy fitness GA and the completely dominant Pareto GA 

relaxing selection rule are push more population into HP areas. However, the fuzzy 

fitness function requires that designers are knowledgeable about the system to design a 

suitable fitness function. It is arguable that designers could have run a number of 

simulations to become familiar with the system. Main problems that fuzzy fitness will 

face are a larger HP space to search, which increases with problem dimensionality, and 

need of diversity techniques. It is hard to design a fuzzy fitness function to push 

population distribute evenly. Figure 3 shows that population are denser near f1=1 areas. 

The completely dominant Pareto GA can successfully make the population converge to 
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HP area while keeping diversity. It is intuitively appealing to designers. Designers can 

have a clear picture about the range of objectives of design in HP areas.  

 Table 2 shows a comparison of GA performance between NSGA II Real_coded 

with Completely dominant GA Real_coded. Two metrics defined in the paper [21] are 

used to measure convergence and diversity performance. As table 6.1 shown, CDGA has 

a better convergence performance (γ metric) than NSGA II for T6 testing problem 

(p<0.01). The diversity metric (Δ metric) is almost in the same level for both algorithms 

(p = 0.25). 

 

Table 2. Comparison of GA performance 

γ metric Δ metric Algorithm 

Mean Variance Mean Variance 

NSGA II real-coded 3.38 0.13 0.668 0.010 

CDGA 1.75 0.25 0.678 0.014 

 

 

 The Pareto GA without diversity control did very poorly on this special problem. 

[21] has shown that some multiobjective GAs with sharing techniques can improve 

searching. However, any sharing techniques are computational expensive. Completely 

dominant selection allows equal producing child opportunity in HP areas at each iteration. 

In this way, even without any additional diversity control, it shows a good performance 

on such nonuniformly distributed test problem. It is easy for designers to do additional 

exploration for design because they can define HP areas and solutions in HP areas are 

nonbiased. 
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5.2.2 Example 2 – Simplied Engine Control Design 

 
Figure 4. Engine Control Design model 

 
This is a closed loop engine speed control model. The engine dynamics is simplified to a 

function of throttle angle, start of injection, engine speed, load, and inertia. The three 

design variables are two control gains and fuel injection time. The objective of the 

controller design is to minimize two kinds of tracking errors: stable engine speed state 

tracking and accelerating state tracking. For stable engine speed condition, it is desired 

that the engine speed control model has a small steady state error. For the second case, it 

is desired that the engine speed control model has a quick response time to follow 

acceleration trajectory. Since the engine always has disturbance during running, such as 

inertia and load changing, the design also wants to meet robustness requirement to 

overcome any disturbance in torque feedback. 

 The engine dynamics are modeled in Simulink. The complicated dynamic engine 

has no explicit function to describe relationship between objectives and design 

parameters. To get the design objectives for each combination of design parameters, 

designers have to run simulations for 20 seconds to calculate the tracking errors. If using 

the traditional design methods, this is very time-consuming to find out the right gains and 

the fuel injection time given the contradicting objectives, and the robustness concerns. 

However, with the help of the complete dominant GA methods plus automated software 

designed in this dissertation, it is easy to solve this multiobjective optimization problem. 
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Our Engineering Design Genetic Algorithm software (EDGA, see appendix) will 

manage the evolving process of genetic algorithm by controlling simulation. It 

automatically runs everything; include Simulink model simulation, population evolving 

process, and optimization results management after the model is hooked up with the 

software. All genetic algorithm operators can be set in the software. 

 This is a multiobjecitve optimization problem with three design parameters and 

two objectives. Since there is a need to meet the robustness requirement, another 

uncertainty parameter – torque disturbance is included in the design parameter set, 

assuming that the torque disturbance is changing in [0 2] range. In addition, since there is 

no uncertainty for control gains, we multiply a scale 100 to the control gains so that any 

uncertainty in [0 1] range is ignored. For injection time, engine system can only achieve 

one-degree accuracy, so we add half-degree uncertainty in the search of optimal design. 

The GA setting is listed in table 3. 

 

Table 3 Genetic operators and parameters 
GA type Floating point 
Initial Population 32 
Mutation Non-uniform  
Crossover One point 
Selection Tournament 
Termination 100 generations 

 

The tolerances for two objectives are set as 0.12 and 0.07 respectively. The robust point 

found by Completely dominant GA is 0.18 for Proportional gain, 0.12 for differentia gain, 

35 for fuel injection angle. This design point is located on the Pareto Front and has the 

most robust resistance to the torque disturbance. If the torque disturbance is changing 

between 0 to 2 KN*m, the two objectives are bounded by [±0.12 ±0.07] respectively. If 

we want to further minimize the objective variances, the torque disturbance range has to 

be reduced. In another word, the disturbance range directly affects the variance of the 

objectives. For designers, it is clear that what sacrifice in objective values they have to 

bear to overcome the disturbance. If the accepted variance for the objectives could be 

larger, there would be more robust solutions that could be picked. 
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Figure 5. Objective Space 

 

 For the same engine optimizastion problem, if engine characteristics are changed, 

i.e. the optimization function is changed while objective functions are still the same. 

Applying the same setup for CDGA, figure 6 shows the objective space for the new 

engine type. The Pareto Front is moved to a different area due to engine model’s change. 

Optimal PID gains and SOI are also changed to different sets. To achieve the same 

objective tolerance target, the optimal and robust PID gains and SOI are 0.32, 0.47, and 0, 

respectively. However, for this type of Engine, our disturbance to torque is only under 

0.25 kN*m range if the same objective tolerance is used. That means we can not achieve 

robustness requirments for this type of Engine. To realize the robustness requirement, we 

need to either loose robustness requirement or loose optimum target. In another word, it is 

possible to sacrifice optimum to achieve robustness for this engine controller design. 
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Objective Space for Engine II
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Figure 6 Engine II Objective Space 

5.2.3 Example 3 – Brake System Design 

 CDGA is also applied to the Hydraulic Brake Design problem mentioned in 

Chapter 3 to study design robustness. As complicate the problem is, there are many robust 

designs along the Pareto Front. Figure 7 shows two different robust solutions found by 

CDGA. Some design variables are located in the same range such as design variable 2, 5, 

and 7, while some of design variables are far away. These two solutions are located in the 

Pareto Front and have almost the same robustness performance, which tolerate 10% 

disturbance for any design variable in 0.1 objective range. In another word, if any less 

than 10% disturbance occurs in any design parameters for these two design combinations, 

the objectives are guaranteed to be varied less than 0.1. Using the first design variable as 

an example, the design table can have 10% disturbance and do not cause large objective 

variation. The table is mapped to one design parameter using ratio between the lower 

bound and the upper bound. Figure 8 shows the curve of the first design table and its 

robust design range.  

 In a word, CDGA finds two robust solutions for such complex hydraulic design 

problems. If the worst disturbance for design parameters is less than 10%, the robust 

solutions can guarantee the objectives of design to be vary in less than 0.1 in its Pareto 

Front area.  
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Figure 7. Parallel Plot showing robust design 
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Figure 8. Design Table 1 range 

 

 

5.3 Discussion 
  The first example is a standard testing problem for multiobjective optimization. 

CDGA has shown significant improvement in convergence and achieved the similar 

diversity comparing with NSGA-II. The other significance of CDGA is its simplicity. It 

does not have a complicated diversity control techniques, which normally require 

tremendous additional search. Combining with certain diversity control techniques is a 
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possible future research area. However, since CDGA is mainly for multiobjectiv 

optimization problems with robustness concern. How diversity techniques affect locating 

robustness requires more deep studies. 

 The second example shows a practical engine control design problem with 

robustness concern. Completely Dominant GA has successfully searched the design space 

and located a set of design parameters that not only makes the objectives closed to the 

Pareto Front, but also gives a minimal boundary for objective variances during 

disturbance. The clustering search verifies the boundary is minimal and it could be 

smaller in reality. This is very important for designers because they will have confidence 

on their controller design. The objectives for the worst case are bounded in a certain 

tolerance. CDGA does not need complicated robustness estimation techniques and 

automatically makes the final population converge to the robust area.   

 The third example is the restudy of Brake System presented in Chapter 3. We 

focus on robustness study of Brake System optimization, especially that this example 

involves curve design. CDGA has shown that it is able to locate robust design area for 

such complex system and is capable to deal with curve design as normal parameters. 

Future research on applying CDGA on constrained optimization problems especially 

constrains in parameterizing curves.  

 This chapter has shown CDGA’s performance on convergence, diversity, and 

robustness using different testing problems. CDGA has a superior performance on 

convergence and robustness. Its diversity performance is comparable with other Pareto-

based Genetic Algorithms with diversity control techniques. Since the examples used here 

are all two objective optimization problems, high dimensional objective problems are 

needed to further explore diversity in the future. 
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CHAPTER 6. INTERACTIVE GRAPHICS FOR 
ENGINEERING DESIGN INVOLVING DYNAMIC 

EQUATIONS AND GENETIC ALGORITHMS 
 

6.1 Introduction 
The general engineering design process involves modeling, simulation, and evaluation 

[4]. Complex engineering design problems are normally high dimensional and 

multiobjective and are modeled by complicate non-linear dynamic equations. It can be 

very time-consuming sometimes impossible to find optimal designs by solving dynamic 

equations. Several optimization methods have been applied to the engineering design 

problem to find the optimal design automatically, such as simulated annealing and Tabu 

search [1]. Of these optimization algorithms, evolutionary methods have become popular 

because they are gradient-free and generally produce good results [13]. Genetic 

algorithms (GAs) have become a commonly-used optimization tool for design engineers 

especially for multiobjective optimization problems. GAs can extensively and efficiently 

search the design space to find an optimal and robust design combination that meets 

design objectives. 

Multiobjective optimization means that the optimization problem has several 

objectives to meet. Sometimes, objectives are conflicting each other, i.e. if one objective 

becomes better, another one will be worse. The optimality of the multiobjective 

optimization is defined as Pareto optimality [11]. Dominance is an essential concept in 

Pareto optimality. If a solution A is said to dominate another solution B, it means that all 

of A’s objectives are better satisfied than B’s. The set of non-dominant solutions among 

all possible solutions is called the Pareto front. The goal of multiobjective optimization is 

to find a trade-off solution on the Pareto front. 

Genetic algorithms (GAs), developed by Holland [8], are one of the most common 

evolutionary algorithms. They are inspired by natural selection and survival of the fittest. 

GAs are powerful and robust stochastic search and optimization techniques, which have 

been applied to many engineering and mathematical areas such as engineering design [4, 

6] and stock investment [3]. GAs can solve complex problems that are difficult to solve 

with conventional techniques, such as gradient approximation methods. To find an 

optimal design or locate the Pareto front requires that GAs extensively explore feasible 

design hyperplane regions. The difficulty with using GAs in multiobjective optimization 
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is understanding the solutions as design dimension increases. The Pareto front will form a 

complex hyperplane. Furthermore, nonlinear complex dynamics of system will result in 

complicated interactions between input and output. It is hard for designers to have an 

overall picture of the Pareto Front. 

GAs are beneficial for engineering preliminary design because they are capable to 

explore High Performance area completely and quickly [5]. In this design stage, design 

engineers are more interested in interactions between input and output than finding an 

optimal design. Data analysis and visualization in high performance regions will help 

engineers better understand multivariable interaction between design variables and 

objectives. 

Visualization is the visual representation of information (data sets, geometry 

models) using graphics, image, or animations. Human’s perception and cognition to 

visual effect enable them to rapidly obtain insights in data, such as relationship, clusters, 

and trends. Visualization can help engineers to understand the evolutionary process and 

underlying relationship between input and output. Traditional visualization methods for 

GAs [14, 15] generally show simple graphs displaying fitness or objectives versus 

generation time as shown in figure 1. These graphs show overall convergence 

information. However, design engineers need to know more about the relationship 

between input and output, relationship between different objectives, and robustness of 

design, etc. This work explores methods for visualizing data from evolutionary. 

Background information for engineering evolutionary design is provided in section 2. 

Section 3 presents the modular structure of visualization software and visualization 

techniques. Section 4 focuses on using visualization to present useful information for 

design engineers, and section 5 concludes the paper 
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Figure 1 GA fitness evolution process 

 
6.2 Engineering Evolutionary Design using Genetic Algorithms 

GAs start from a set of initial population. At each generation, the weaker ones in 

the population (low fitness) tend to die and the stronger ones (high fitness) tend to 

produce children by crossover and mutation [7]. As generation goes on, the final 

population will contain a lot of high fitness individuals, i.e., optimal design combinations. 

The general procedure for GAs is as follows: 

Set up binary or real number data structure (chromosome) representing design 

combination  

Create an initial population 

 Evaluate solutions in the population 

 Repeat 

  Select solutions to produce offspring 

Produce new solutions from parents’ chromosome by mutation and 

crossover  

  Evaluated new solutions and put them into the population 

 Until stopping condition met 

GA uses fitness to evaluate solutions and select the next population. Fitness is a 

function of objectives. It reduces high dimensional objectives into one dimension. Some 

common fitness functions are weighted-sum fitness function, fuzzy fitness, and 
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dominance rank [1, 5]. The example in this paper is using weighted-sum fitness function, 

which is a linear mapping from objectives to fitness ∑ ii objectiveweight * .  

Parmee has proposed Cluster Orient GA (COGA) to help engineer do preliminary 

study. The basic idea is to keep GA converge to high performance (HP) area quickly, 

which is an area close to the Pareto front. The high performance clusters can help design 

engineer further understand system such as input and output interactions and design 

variables sensitivity. COGA uses variable mutation rate to allow diversity in the final 

stage so that it can formulate high performance clusters. In order to prevent low fitness 

solutions from falling into clusters, filters, which are using a threshold to filter low fitness 

solutions, have to be used in evolutionary process. Engineers face bigger challenge when 

using COGA for preliminary study because more results are needed to be studied.  

 
6.3 Visualizing GA Output 

Designers build models to simulate system performance. Genetic algorithms (or 

other evolutionary algorithms) control models to generate a lot of simulation runs in 

evolutionary process. The results from the genetic algorithm are stored in a database 

along with the search parameters for the potential solutions. Any visualization can be 

constructed through database connection.  

The normal data from GAs are chromosomes, objectives, fitness, generations, 

parents, and life time. For engineering design, the chromosomes are formulated from 

design variables. There are two kinds of design variables: single parameters and look up 

tables. Single Parameter is a numeric value such as PID gains. Look-up tables are 2D 

curves or 3D surface to model nonlinear characteristics of a particular system. Each 

design parameter is one chromosome in an individual gene. For tables, there are several 

techniques to construct a curve such as interpolation and parameterization. For example, 

if using interpolation method, a table can be represented by one ratio variable. The table 

values can be recovered by a conversion as follows: 

Table=min_table+(max_table-min_table)*ratio 

where min_table and max_table are tables on low boundary and high boundary, 

respectively. No matter what technique uses, a table can be represented by several real 

number chromosomes.  
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   Figure 2 Visualization Software Structure Diagram 

 
 

Data Visualization is normally showing high dimensional GA results into 2D/3D 

dimensions. Typical plots include time series plot, scatter plot, and parallel coordinate 

plot. Time series plot generally is used to show GA’s convergence progress such as 

fitness vs. generation. Scatter plot shows correlation of two variables. For high 

dimensional data, scatterplot matrix is able to show data in pair dimensions. Projection 

method is able to change high dimension data into 2 dimensions so that data can be 

viewed in scatter plot. Parallel plot presents a series of data with line connections between 

data. The x axis is a set of parallel axles for each variable. It is highly effective to show 

input combinations. Most of the existing visualization software packages support all plot 

types. Some of them support dynamic visualization, which means that users can interact 

with visualization and look at the same data area in different plots. In the following 

paragraphs, GGobi is used to show how to use dynamic visualization to present GA 

results. The unique feature in GGobi is its Grand Tour method that will be described later. 

For GA results, we are trying to visual multivariable relationships, such as: 

1) Input space: How well did GAs cover the possible inputs? Are there big empty 

spaces in the inputs, combinations that were not run at all? Maybe this suggests doing a 

few manual runs of these combinations to check that it is not important for getting good 

output. 

2) What is the relationship between multiobjective function and the fitness functions? 

Are all the objective functions optimized when fitness is optimized, or what are the trade-

offs between objective functions. 

3) What is the relationship between fitness and inputs? Does good fitness correspond 

to small neighborhoods in the input space? 
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Exploring mulit-variable relationship is important to understand complex system 

dynamics and nonlinear system characteristics. For example, if a multiobjective 

optimization problem is converted to a single fitness function problem, the choice 

for the fitness function is critical to optimization. If an undesired fitness function 

is chosen, the GA optimization  will be pushed to a wrong direction so that the 

final optimum may be away from the Pareto Front. Visualization is capable to 

help design engineers to explore the design space so that it will help design 

engineers to choose a right fitness function. 

 
6.4 Examples 

In order to present these techniques, a real industrial backhoe design problem is 

used as an example. This design problem has 7 variables to design and four objectives to 

meet. Detailed problem description can be found in paper [6]. The design variables are 

marked as Design Variable 1 to 7 and the objectives are marked as Objective 1 to 4 

respectively. The fitness is the function of four objectives (5 -∑objectives ). The design 

goal is to maximize the fitness or minimize all objectives in multiobjective sense. GA has 

been used to optimize the design and GA results have been put into a database. 

 
1) Conventional Visualization 

Conventional visualization, which uses 2D plots, can be easily constructed through 

database such as best individual vs. generation and objective convergence. Common 

techniques that have been used in presenting high dimensional evolution data include 

using Dimension Reduction, Color graph, Glyphs, Parallel coordinate, and Projection [1, 

16]. Most of the existing techniques use the static plot to present evolutionary data, which 

is good to show evolution process but hard to explore multidimensional relationship. For 

engineering designers, the underlining relationship between design variables and design 

objectives is more important than evolutionary process.  Figure 3 is a typical static plot 

suggested in [12]. It shows High Performance points of Objectives 2 and 3 in hyperplane 

Design Variable 3 and 6. Objective 2 and Objective 3 are not exclusive in Design 

Variable 3 and 6 dimensions because they have overlapping areas. However, 

conventional static plots cannot show the multivariable relationship efficiently. It is hard 

to know relationship of Objective 2 and 3 in 7 design variable dimension and variable 

sensitivity in full dimensions. In addition, all combinations of any two design variables 
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have to manually set up to fully explore interactions. The following visualization 

techniques presented are all dynamical and interactive. Designers have more freedom to 

look at the data in high dimension and find the information much more quickly. 
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Figure 3 Sensitivity Analysis of Design Variable 3, 6 

 
T6 Optimization Example: 

T6 optimization problem is a popular testing case for evolution algorithm [18]. It is to 

minimize two objective f1 and f2 defined as follows. 

f1(x1) = 1-exp(-4x1)sin6(6πx1) 

f2(x) =  g(x2, …, xm)h(f1(x1), x2, …, xm) 

where 

 g(x2, …, xm) = 1+ 9*((∑
m

ix
2

)/(m-1)0.25 

 h(f1(x1), x2, …, xm) = 1 – (f1/g)2 

 m=10 

If we assume the objective functions are not known, it is hard to interpret the 

relationship between objectives and inputs using static plots due to high dimension. 

However, dynamic visualization techniques are able to easily present the relationship.  As 

shown in figures 4 and 5, as we brush along the Pareto Front in objective space, the input 

combinations are highlighted in the Parallel plot. When obj1 (f1) is close to 1 in the Pareto 

Front, x2 – x10 are all close to the lowest value (0). X1 is spreading along its range but 

forms several clusters, which suggests us that the function between x1 and f1 is 
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multimode. If we brush the points along the f1=1 area, it is easy to identify that x1 is 

independent with f2. 

 
Figure 4 Parallel Plot for inputs 

 

 
Figure 5 Scatterplot for objectives 

 
2)  Interactive visualization 

  Design engineers not only want to optimize system performance, but also want to 

understand the relationship between input and output in order to improve system design. 

Typical questions design engineers want to study are how each input affects system 

performance, what design combinational is optimal and robust, and what design 

combinational results in bad performance. 

  Parallel and scatter plots can be used to show the connections among input 

variables and high dimensional output. Figure 6 is the parallel plot of three design 

variables. In a parallel plot, each line represents a connection between two variables. 

Figures 7 and 8 are the scatter plots of two output variables. A technique called brushing 
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is used to help engineers to link these plots and answer above questions using 

visualization. Brushing - is the process of selecting multiple data points, shown by a box, 

where the corresponding points in other plots identify themselves by changing color. As 

in figure 8, certain combinations of Objective 2 and Objective 4 are brushed. The 

corresponding points are highlighted in other two plots. The visualization shows that 

these combinations have very narrow range for Design Variable 1 and the other input 

variables have wide ranges. It suggests Design Variable 1 is sensitive to Objective 2 and 3 

while Design Variable 2 and 3 are nonsensitive in this hyperplane area. It is easy to move 

brushing areas and look at variable sensitivity in other regions. Parallel plots provide a 

possible way to study high dimension interactions by putting several design variables in 

and also the input space covered by GA. The dynamical visualization provides quick and 

easy interactive method to look at input-output relationships. 

 

 
Figure 6 Parallel plot of Input design variables 
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Figure 7 Scatter plot of output variables  Figure 8 Brushing  
 

 
3) Multiobjective Exploration 

For multiobjective optimization problems, it is difficult for design engineers to 

design a desired fitness function to trade-off multiple objectives. For example, if using a 

weighted sum method in GA [7], choosing different weights will guide GA to different 

directions. Design engineers are interested in the Pareto front, non-dominant sets. If they 

have ability to explore the Pareto front, they can choose a trade-off solution themselves.  

In our example problem, there are four objectives that can be represented in two 2D 

linked plots. Figures 9 and 10 are scatter plots of four objectives. They show some non-

dominated solutions formulating part of the Pareto front in high dimension. Figure 10 is 

the fitness distribution plot. By brushing a small non-dominated area in objectives 1 and 3 

space, we can see its corresponding fitness and its position in other objective space 

(figure 11). In such plot setup, we can not only have an understanding of interaction 

between multiple objectives, but also have an insightful knowledge of fitness vs. 

objectives. It is easy to remap objectives to a different fitness function and compare 

results in the same setup. Linked scatter plots provides an easy way to look at multiple 

objectives and study High Performance regions. 
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Figure 9 Scatter plot of Objectives 1 and 3 Figure 10 Fitness distribution 
 

 
Figure 11 Scatter plot of Objectives 2 and 4 

 
4) High dimensional visualization 

For multiobjective optimization problems, high dimensional visualization can help 

understand multiple objectives’ evolution. Traditional high dimensional visualization is 

using multiple scaling to map high dimension data to 2-D plot. The disadvantage is that 

multiple scaling [2] is itself an optimization problem and it rarely exists an optimal 

solution. Even if it showed the distance roughly correctly, it could not clearly show what 

solution is better and essentially what the Pareto front is.  

 The Grand tour is a dynamical view of high dimensional data [14] that maps high 

dimensional data into two-dimensional plot while changing the projection matrix 

continuously. Users see is an animation of data from different projection angles. The 
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Grand tour not only shows the distance between points in a dynamical way and but also 

shows the high dimensional relationship between points. Appendix 1 shows continuous 

snapshots from Grand tour for best individuals in a four-variable and seven-variable space 

respectively. Combining with brushing techniques, they show that in four-variable space 

best individuals form a solid cluster while in seven-variable space they scatter away. It 

suggests additional dimensions (Design Variable 2, 4, and 6) are not sensitive as other 

four design variables. Grand tour is a powerful tool to show high dimensional projections 

and clusters. 

 

5) Pareto Front 

The Pareto Front is the set of non-dominant solutions. Since designers can only 

choose one solution as the final solution, the final optimal solution is often picked from 

the Pareto Front or High Performance Area. Visualization greatly helps designers to 

explore the Pareto Front and make the final decision. Multiple scaling and Grand Tour are 

not very effective in presenting the Pareto Front. The most effective way found is using 

dynamic visualization either in Parallel plot or in scatterplot matrix. The Pareto Front can 

be separated from all solutions first and then presented in visualization. Figures 12 and 13 

show four-dimension Pareto Front in Parallel plot and scatterplot matrix respectively. 

Users can brush any area in one objective and find out the solutions’ positions in other 

objective space.  

 

 
Figure 12 Visualization of the Pareto Front in Parallel Plot 
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Figure 13 Visualization of the Pareto Front in Scatterplot matrix 

 
 

6.5 Conclusion 
Engineering design data has fixed format because of its natural characteristics. It 

makes possible to design a generic interface for visualizing engineering design data 

generated by genetic algorithms. The generic software structure in the paper can be 

extended to any engineering design models and other evolutionary algorithm data. The 

multivariable relationship of design variables and design criteria is needed to be fully 

explored for designing a complex system. The dynamical and interactive visualization 

techniques presented in this paper can help engineers explore the data quickly and 

identify unusual pattern easily.  
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Appendix I Snapshots from Grand tour 
Figures 14-17 are snapshots from grand tour of GA data. They are 
presented in four dimensions with Design Variable 1, 3, 5, and 7. The 
highlighted data points are with good fitness. 

  
 
 

 
 
 
 
Figures 18-21 are snapshots from grand tour of GA data. They are 
presented in 7 dimensions with all design variables. The highlighted data 
points are with good fitness. 
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CHAPTER 7. DISCUSSIONS AND CONCLUSION 

The thesis focuses on solving difficulties existing in multiobjective optimization 

problems for Engineering Design. First, engineering design problems are modeled as in 

complex dynamical models, which are hard to apply traditional optimization methods to. 

Second, lack of visualization and data analysis methods make it difficult to understand 

multivariate relationship in engineering multiobjective design. Third, robustness in 

engineering design is a fundamental problem. To balance robustness, optimality, and 

diversity is a multiobjective problem itself. Few existing multiobjective optimization 

algorithms are aimed at improving robust design for Engineering Design. 

For the first issue, we propose applying genetic algorithms to Engineering Design 

Optimization. Genetic algorithms are very general optimization techniques that do not 

require calculating gradients and having explicit function description of the system.  In 

particular, genetic algorithms work very well on different types of optimization problems 

(continuous and discrete). They are less susceptible to getting stuck' at local optima than 

gradient search methods because of its multi-directional search. Engineering design 

problems sometimes are so complex that no closed-form transfer function is able to 

represent the relationship between outputs and inputs. Design engineers normally build 

complex dynamical models in modeling software tool to study system dynamics and 

control characteristics. For example, the hydraulic problems presented in the thesis are 

typical problems that engineers are facing in current industry. They are high dimensional 

design problems and involve non-linear dynamics and uncertainty in disturbance. Without 

good optimization tools, currently engineers have to design the system based on their own 

experience. Existing commonly used optimization methods such as simulate annealing 

and Tabu search, etc, have difficulties to deal with multiobjective optimization problems. 

Applying GAs to these high dimensional optimization problems has shown very good 

results in the dissertation. This dissertation suggests using real-value GAs for engineering 

design problems because it is natural for designer to treat each design input as a gene. 

This also makes that crossover operation in GAs will not cut in the middle of a design 

input as in the binary format. Existing researches have shown that real-value GAs have 

the similar performance as binary ones for real value optimization problems.  

There are many varieties of multiobjective Genetic Algorithms dealing with 

multiobjective optimization. This dissertation has evaluated different techniques in fitness 
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design for multiobjective GAs. Combining multi-objectives into one fitness function is a 

common way to simplify optimization problems and easy for design engineers to 

understand. But this method can not explore the Pareto space and will only return one 

optimization solution as directed by the fitness function. It is suggested by this 

dissertation that this method should be only be applied to some simple problems or the 

problems that designers have preliminary knowledge about optimal solutions. Fuzzy 

objective functions and dominance based objective functions have been explored and 

have shown that they are capable to explore the Pareto Space more thoroughly. But fuzzy 

objective design requires that designers have some preliminary knowledge on the Pareto 

Front. Different fuzzy functions will result in different search scheme for Genetic 

Algorithms. Therefore, the dissertation recommends using dominance based 

multiobjective GAs to solve high dimensional and complex optimization problems in 

engineering design areas.  

In multiobjective optimization, GAs require several design cycles: modeling, 

optimization, evaluation. Designers have to explore the design space to decide the final 

optimal solution. As Parmee suggested, GA has more impacts on preliminary study. It is 

important for GAs to quickly explore the design space and find the High Performance 

area. Designers can further explore HP area through clustering or visualization. With this 

idea in the mind, we proposed a new Completely Dominant Selection method. The idea is 

to relax dominance rule and allow non-dominant solutions to have chance going into the 

population. It still pushes searching converge to the Pareto Front or areas close to the 

Pareto Front, but prevents stuck into locally dominant solutions. Compared with common 

GA’s selection method, it adds a tolerance to dominance concept, i.e., a solution is 

dominant to another solution only when the difference is larger than the tolerance. Since 

the new selection method does not change the essential dominance idea, many Genetic 

algorithms still can be coupled with this idea. We used a standard testing problem for 

Genetic Algorithm to show the powerfulness of this new idea. From the convergence and 

diversity aspects, the new idea shows a great improvement on performance comparing 

with Genetic algorithm without diversity control techniques. The new GA has better 

convergence performance than standard NPGA and achieves the same level diversity 

performance. Furthermore, the new GA doesn’t need to use complex diversity control 

techniques which are computation intensive. Its natural characteristics results in diversity 

in the population.  
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There are many research areas that can be explored in multiobjective Genetic 

Algorithms. All multiobjective Genetic algorithm optimization share the disadvantage of 

extensive searching. It is unavoidable that GAs will search a lot of unrealistic areas in the 

view of design engineers. How to guide GAs using expert knowledge is a potential 

research area to further improve efficiency of multiobjective genetic algorithm. Other 

future research areas include applying this new idea to more existing multiobjective 

Genetic Algorithms and solve multiobjective optimization problem with constraints. 

 We developed a software tool called EDGA for design engineers to use GAs for 

engineering design problems and applied EDGA on a hydraulic design problem from real 

industry. It shows that industry design problems are always involved with multiobjective 

optimization. The interaction between design variables and objectives is hard to 

understand. GA is a good way to explore the problem and find out the Pareto Front 

without profoundly knowing relationship between input and output. With the help of 

interactive visualization, we are able to present the high dimensional Pareto Front set, 

robustness of design, and sensitivity of design variables in high dimension using EDGA. 

The application has shown that our software and design concepts help engineers solve 

real industry problems.  

 For the second issue, we presented various visualization techniques for analyzing 

GA results. What makes GA data unique is its complex interaction between genes and 

fitness (Pareto dominance) and the existence of the Pareto Front. Existing visualization 

methods for GA data can only explicate evolving process and multivariable relationship 

in low dimension. We used a real industry design problem as an example to illustrate how 

to explore GA data using dynamic visualization. Dynamic visualization allows users 

interact with visualization. It can link several different plots together so that users select 

an area in one plot and the corresponding areas in other plots will be highlighted. Another 

feature of dynamic visualization is to project high dimensional data into 2 dimension 

plots and show them continuously by randomly changing project matrix. These 

techniques are very powerful to show design variable sensitivity, robustness of design, 

and the Pareto Front. For engineering design problems, another visualization linkage can 

be established by linking design combination with physical models. In John Deere 

Backhoe design project, backhoe model movements are displayed in a virtual reality 

environment. Designers can select any design combination saved in database interactively 

and look at Backhoe’s movement. It is more impressive for designers to look at system 
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performance before production than look at data. Even though building system graphical 

simulation needs additional work, it is worth the effort for designing a complex system.  

 Some of high dimensional visualization techniques are hard for designer engineers 

to understand, such as projection and grand tour. It will take some training time to get 

familiar with these techniques. Researches have proved that there is no significant 

improvement if the high dimensional data are projected to 3-D space. Engineers still like 

to see normal 2-D plots. In the future, more industry application cases are needed to 

present to show how to understand the high dimensional data using dynamic visualization 

and how to present GA data using high dimensional visualization techniques. 

 For the third issue, we discussed some important issues of multiobjective genetic 

algorithms thoroughly in the dissertation. Diversity and convergence are two conflicting 

factors in multiobjective optimization. How to balance them is an essential part for 

different GAs. For engineering design problems, designers are concerned about design 

robustness. Products operated in real environment are susceptible to disturbance and their 

manufacturing process is easy to bring tolerance as well. A practical good design should 

be satisfactory for optimality and be robust to uncertainty. We suggested using the 

completely dominant Genetic algorithm for balancing these two key issues. CDGA is 

capable to locate the high performance area without destroying the robustness 

information. After CDGA has found the high performance area, we applied clustering 

method to find out the most robust area in the high performance area. The simulation 

results have shown that CDGA has a great performance on convergence and diversity. In 

addition, it shows excellent ability to locate the robust area. CDGA shows significant 

performance on convergence and diversity even without any diversity control techniques. 

In addition, CDGA is intuitively designed for design robustness consideration. Designers 

are able to put their requirements for objectives optimal level and design variable 

tolerance into CDGA. CDGA is capable to handle these constraints to find the robust and 

optimal solution. Its simplicity makes it suitable for quickly setting up preliminary study 

of engineer design as well.  

 Different examples have been used to prove the concept of CDGA. Not only the 

convergence and diversity performances of CDGA have been studied, but also the 

robustness performance has been shown with the examples. The dissertation has 

described how to use CDGA to meet designers’ robustness requirement and how to use 

clustering algorithm to analyze CDGA’s result to find the robust solution. Simulation 
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results have proved that CDGA is capable to locate the robust solution and determine the 

maximum disturbance that system allowed.  

In the future, CDGA need to apply to more complex design optimization 

problems. Some future research areas include applying CDGA into multiobjective 

optimization problems with complex constraints, applying CDGA with diversity control 

in high performance area,  

 To conclude, this dissertation is dedicated to engineering design optimization 

using Genetic Algorithms. It discusses several important issues from GA software for 

dynamic modeling, Multiobjective Engineering Design Optimization to Data Analysis. It 

has been preliminarily used in industry for designing hydraulic system. Future additional 

exploration of software is needed and more complex industry problems are needed to be 

tested. The new complete GA has its exceptional advantage over classical multiobjective 

GAs and will be applicable to numerous engineering design problems, especially ones 

concerning about robustness. 
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Appendix: ENGINEERING DESIGN SOFTWARE 

1. Software Overview 
 Engineering Design Genetic Algorithm (EDGA) software is designed to assist 

design engineer to optimize system using Genetic Algorithm. Design engineers face 

varieties of different design tasks in current rapid prototype competition environment. All 

design tasks involve optimization in certain design stage. A user-friendly optimization 

tool is necessary to help design engineer quickly solve optimization problems. 

 It is no surprise that many commercial and non-commercial software packages 

have provided various optimization algorithms. For example, there are many different 

algorithms in Matlab© Optimization Toolbox, and there are many free Matlab based 

optimization software packages [4, 16]. However, design engineers need to implement 

their problems into software packages, which could be the hardest challenge.  

 Due to design complexity, design engineers always need to transfer their engineer 

design problems into computer language so that they can use computer to do complicate 

and tedious calculations and simulations. In design industry, many commercial software 

packages are available for modeling complicated engineering system. For example, 

EASY5© is a graphics based dynamics modeling tool and is developed by Boeing 

Company. It has been extensively used in hydraulic control modeling areas such as 

airplanes and tractors. Our software is designed to be able to integrate with various 

modeling software packages. The integration is independent with modeling software so 

that it can be generally applied to optimization problems without limitation.  

 Our software is intended to assist design engineers to solve optimization using 

Genetic algorithms. The goal is that the software is so easy to use that engineers can use it 

in daily basis. It has easy-to-use features and includes many user-friendly interfaces 

providing easy interactions. The complicated fitness design part has been simplified by 

using interactive graphics design. 

 Our software not only provides GA optimization tools, but also provides various 

methods to assist engineer to understand system. EDGA has Design by Experiment 

functionality and Visualization tools to help engineers do preliminary study and explore 

the system. These tools are extremely useful because GA can only optimize system to 

where it is designed to search. The preliminary study will help to study multiobjective 

relationship and relationship between inputs and outputs.  
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 Software structure is shown in figure 1. The whole structure is database core-

based. Any components’ communication is through database. This structure allows 

people work coordinately and share their design experience and results optionally. The 

core system is developed by using Perl language. The main reason to use Perl is that its 

excellent cross-platform transformability and good efficiency. Its object design ability 

and easy GUI development, of course, are its advantage over some other program 

languages.  Many other tools are not developed in Perl. They are either because certain 

algorithms have already been well developed by other packages or many required 

libraries have been provided by other packages. Since these tools do not directly 

communicate with Perl program, it won’t increase software-using complexity. It is good 

for extensibility because many design engineers are not expert on Perl but are familiar 

with Matlab and C and capable to develop their own functionalities. 

 
Figure 1 software infrastructure 

 

The integration of modeling software requires an input file, an executable file, and 

an output file. The input file specifies parameters and tables users are interested in. 

Values of these variables can be changed through PIE interface. The output file contains 

the simulation results from the modeling software. Normally it is a time-series file. Users 

are able to select multiple outputs they are interested in and generate the output file in the 
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modeling software. The executable file is the model file generated by modeling software. 

In this seamless design structure, any modeling software can be coupled with our 

software system. 

Designing a high dimensional system requires running many simulations. The 

management for simulation data is difficult for engineers. Due to large number of runs, it 

is hard to know what combinations have been run and what combinations have not. 

Database is used to provide storage and management for large sets of simulation data. 

The standard structure of the database makes the whole software easily extensible. 

The output file generated by modeling software contains time series output data. 

Designers are not normally interested in the whole time response, but are interested in 

some summary variables, such as maximum value and overshoot. Our software provides a 

data-filter tool to process time series data based on users’ preference. The results will be 

stored into database as well. 

Simulation results for a high dimensional complex system are very huge. 

Designers have difficulty in understanding multi-parameter relationship. Our software 

provides high advanced visualization technologies to help designers to understand the 

system. Except conventional 2D and 3D plots are provided, high dimensional 

visualization has been included in our software. Dynamic and interactive visualization 

and Grant Tour (36) provides a new way to look at multivariate data. 

Intelligent search tools are to optimize the high dimensional system automatically. 

Designers only need to specify what to optimize. Then intelligent search tools use genetic 

algorithm (GA) to find the optimal solution in immense design space. Database and 

visualization are applicable to GA results as well. 

 

2 Software Integration 
 The software is constructed and tested with EASY5 modeling software. However, 

its seamless integration method makes it extend to most of modeling software. The 

integration structure divides system modeling into three parts: input file, models, and 

output file. It requires modeling software should allow this structure. Fortunately, most of 

modeling software is compatible with the structure. 

 Input file defines a number of input variables. In any modeling software, there are 

a number of different variables with certain initial values. They are stored into a separated 

file (For example EASY5) or can be put into a file and load it before simulation (For 
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example, SIMULINK). To make software compatible with any modeling software, there 

are only two choices to handle input file. Either a universal compatible input file format 

has to be created or each input file format has its own input file processing method. The 

first way doesn’t exist in reality. Each modeling software has its own input file format, 

which makes it impossible to convert between each other. The universal format is not 

going to happen in modeling software industry in the near future. So the second way is 

the only possible way, which is exactly what EDGA employs. This way sounds 

complicated because it has to provide input file processing functions for almost each 

modeling software. Due to EDGA’s modular design, it is actually very easy to implement 

different processing methods. EDGA has separated processing function into an 

independent library. For different modeling software, EDGA only needs to load the 

corresponding library. From users’ usage point view, there is no actual difference so that 

EDGA is easy to extend to other modeling software packages. 

 Models contain actual design information. In dynamical modeling, complicated 

differential and integration equations with nonlinear functions are constructed to simulate 

input and output relationship in models. It has no surprise that each dynamical modeling 

software has its own design methods. However, this will not affect EDGA. EDGA only 

calls simulating models through modeling software. For example, if using SIMULINK, 

user can run SIMULINK models through MATLAB command sim. To run SIMULINK 

models from EDGA, a MATLAB engine dll file has to be set up to call the MATLAB 

command sim. Even though it seems that EDGA goes through a long way to run models, 

this structure makes it independent with modeling software. It only needs to build 

connections with command to run models. This setup is also good for compatibility. 

 To check if system meets requirement, system response has to been recorded. As 

dynamical modeling simulates system dynamics and use integration to solve differential 

equations, the output from modeling software is always time series response. Dynamical 

modeling software generally provides powerful capability to handle output files. Users 

can set up any format they want. Therefore, it is possible to set up a standard for output 

file format so that EDGA does not need to be modified for different modeling software 

packages. The general output format that EDGA accepts is the first line of output file is 

variable names separated by spaces. The first column is simulation time. The rest 

columns are output variables users are interested. Any output file processing in EDGA is 

based on this format.  
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 Figure 2 shows the main interface for EDGA. All the functionalities can be found 

in interface’s menus. The interface is designed following general GUI characteristics. Perl 

does a good job on keep interface same on different platforms.  

 

3 Software Description 

3.1 Design by Experiments 
Design engineers have to do many trials to test their design. For example, if they 

are design 5 parameters to optimize certain system, they normally choose three values for 

each variable: minimum, median, and maximum. In this approach, they have a basic 

feeling how each variable affect system so that they can decide if design is worth to do 

further investigation. Five variables will make total simulation number to be 243. Without 

a good tool to manage running such many runs, no design engineer is willing to run them 

manually. First of all, it will take so much time. People have to wait with sitting before 

computer till it finishes one run, then sets another combination and runs it again. It is 

going to be a nightmare for such large runs. Secondly, it is impossible to remember what 

combinations have been run and what ones have not. People may have to write down 

combination information into a file themselves and search for combinations have not been 

run in the file. It is not going to be easy in this way. Third, it is hard to match output files 

with input combinations. If users want to see a particular run, they have to find the 

filename in record and then plot them. It is not easy to switch different output displays.  

Our system is capable to provide easy management and control for multiple runs. 

Users can select any number of design variables and set any number of values for each 

variable. Then all the combinations will be stored into database and simulation will be 

handled by software. Users do not need to interact with system at all. EDGA will 

automatically manage running all the runs and store simulation runs into database.  

After users select design variables defined in the input file, the main interface 

changes as figure 3. Users can define number of values and value for each version. 

EDGA provides an interpolation function to fill with large number of values easily. In 

addition, it allows several design variables are linked together. The linkage between 

multiple variables means that these variables have certain relationship. For example, if a 

backhoe is loaded, not only its mass is changed, but also system inertia is changed. It 

makes sense to change these two variables together in designing backhoe.  
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In designing complex system, it is very common to modeling some system 

characteristics in 2D table interpolation. 2D table represents a nonlinear relationship 

between an input and output, which is hard to be modeled in math. It often comes from 

experiments. For example, in hydraulic system, a control valve has its characteristic 

pressure vs. flow property. This curve shape in the valve is what design engineers want to 

design. In modeling, the 2D table is represented in a 2D array. If engineers want to 

redesign the array, they have to manually type in values for 2D array in modeling 

software traditionally. EDGA provides graphically interactive method to design curves as 

figure 4. It is easy for users to rescale or reshape curves. Users can use interpolation to 

generate a set of curves of which boundaries are defined.  

 

 
Figure 2 EDGA main interface 

 
Figure 3 EDGA interface after adding parameters 
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Figure 4 Table Graphical Design Interface 

 

 As users set up all parameters and tables, EDGA will take over control and 

manage to run all the combinations. EDGA has a multi-thread software structure so that it 

can handle different tasks’ communication and show running status of simulation. It will 

tell users how many runs are left and what is the estimated running time required. It is so 

convenient that users can make running experiments fit their schedule and not affect their 

other works. Because database is used to store combinations, EDGA has ability to check 

input combinations easily so that ones already in the database do not need to run again. If 

Design By Experiment matrix is too big, the simulation of EDGA can be stopped any 

time and resume again. 

 All the simulation data will be stored in a local directory users specified and can 

be put into database as well. The simulation output files are marked by a unique number, 

which corresponds to input combinations with same id in the database. This setup 

provides a linkage between input and output files, which is very important for further 

development. It makes possible to present data visually without searching linkage 

information.  

 

3.2 Output Analysis 
 After running experiments, a lot of simulation runs recording system outputs are 

stored. The actual goal of running tedious experiments is to look through data and find 

interesting results. Each simulation file contains time series data for several variables. It 

will take a long time to visually examine each time series data set. It is almost impossible 

to clearly present graphs showing all the runs for large runs. EDGA provides output file 
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processing techniques to capture unique characteristics from time series data so that 

design engineers can do prescreen quickly. It often helps them to better understand 

relationship between input and output. 

 A set of time series data is a data sequence. Designers are not interested the whole 

sequence but some unique characteristics. These characteristics are used to evaluate 

system design and compare with other designs. For example, in designing a controller, to 

decide a controller whether good or bad can be evaluated by steady state tracking error 

and system response rising time. Clearly designers want to get zero tracking error and the 

quickest response. These two characteristics of course can be pulled from looking at time 

series data. However, it would be nicer to generate exact results by processing output data.  

 Figure 5 shows a typical step response from an actual system. Some features that 

might interest design engineers are overshoot, peak value, and settling value. EDGA 

provides a derived data function, which is processing output files to generate derived 

values. Currently EDGA derived function supports Peak Value, Peak Time, Overshoot, 

Decay Ratio, Settling Value, Settling Time, Minimum, and Maximum. Users can select 

any derived values for each output variable. EDGA will process all the simulation files 

and store derived values into database. The derived values are stored in the same order of 

file id order so that they are easy to be connected with input combinations. The data 

processing function can be easily extensed. 

 

 

3.3 Visualizations 
Design by experiments will generate a large number of data. Design engineers 

often have trouble in exploring the data. Data needed to be studied contain input 

variables, which formulate input combinations, output variables derived from time series 

data, and time series data files (figure 5). It forms a network of data. The most effective 

way to quickly explore data is using visualization. Graphics contains the deepest and most 

comprehensive information. Most of the important, it is easy for engineer to understand 

and share information. Designers want to be able to walk among these pieces of data 

freely. For example, they need to find out system response for a special combination or 

need to find the combination with the quickest response. Sometimes, designers want to 

see a set of combinations’ response to compare their results. Therefore, software should 
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be designed to let users easily switch visualization views for any variables and 

any.simulation data.  
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Figure 5 Typical time series response 

 

Database makes it possible to easily pull data from any point in the net. All the 

data from the same simulation run have the same id in the database so that they are linked 

together. Database has a powerful searching and sorting algorithm so that visualization 

software can interact with database quickly. In addition, people can share the data through 

the database server. Because of its standard format, people have no problem to use them 

and are able to use any visualization software based on MYSQL database. 

EDGA doesn’t provide actual visualization functions. Its main function is to put 

data into database and manage the database. Because of database’s popularity, a lot of 

software has functionalities to communicate with database. For example, Matlab is 

popular software using in engineer community. Engineers are familiar with Matlab 

environment and be able to develop programs using it. It has ability to communicate with 

database through c mex functions, and even the latest version has its own library for 

database communication. It is so easy to develop some programs to plot certain graphs. 

Figure 6 is one matlab GUI provided auxiliary by EDGA. It is able to plot time series data 

from any number of files and put them together. EDGA has many other matlab GUIs such 
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as 3D plot and sensitivity analysis plot. All these plots are for special purpose. Users can 

develop their own special purpose analysis tool using simulation data or data from 

database. 

EDGA has a special connection with high dimensional visualization software 

GGobi. GGobi is evolved from XGobi and is a high dimensional statistical visualization 

software package. Besides that it is able to provide common plots such as scatter plots, 

time series plots, and parallel plots, most of unique features are its interactive and 

dynamic visualization. Each plot in the GGobi can be linked to other plots. It has a special 

selection method called brushing, which is that the corresponding points selected in one 

plot are highlighted in other plots. Through dynamic brushing, it is easy to see 

connections between several plots. For example, if one plot is set as a parallel plot to 

show input combinations, and the other plot is set as a scatter plot to show two output 

variables, brushing can easily tell that which combinations have the best response for 

these two outputs and what response of each combination has. Another of nice features is 

that GGobi has a projection method to show high dimensional data in a 2D plot. It is 

using a continuous random projection animation to show high dimensional data. 

Experienced users can detect high dimensional relationship between each dimension and 

clusters of data in high dimension. 
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Figure 6 Matlab 2D plot interface 

 

Even though GGobi supports many data formats, database communication has not 

yet been fully supported. EDGA provides an GUI interface to load data from database 

and pass data into GGobi. It is called Data Visualization User Interface (DVUI). It is not a 

simple bridge between database and GGobi, but also has many data handling methods. 

Database stores tremendous sets of data. They are all useful for each analysis task. 

Designers may only be interested in a subset of data. It is also important to reduce data 

size for better visualization purpose. Figure 7 shows interface of DVUI. Users can select 

parts of variables from long list of variables in the data and set boundary for each 

variable. The data control strategy is very useful to visualize large data sets such as 

automobile warranty data and weather records. 
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4. Evolutionary Design Interface 
Evolutionary Design Interfaces are designed to assist engineers to optimize system 

performance by using Genetic Algorithm. Interfaces include Gene design interface, GA 

operator design interface, and Objective design interface (figures 7-9). 

In Gene design interface, designers can select parameters and tables from the 

input file. The boundaries and resolutions can be set for each parameter or table. The 

interface provides ways to distinguish design variables with condition variables. 

Condition variables are the ones that the system is required to run on different values. For 

example, if a system is required to run on three different engine speeds to check 

performance, the engine speed variable is considered as a conditional variable. Design 

variables forms actual genes in GA.  

 

 
Figure 7 Data Visualization User Interface 

 



98 

 
Figure 8 Genetic algorithm Gene Design Interface 

.  

 
Figure 9 Genetic Algorithm Fitness Design Interface 

 

GA operator interface is used to set GA’s characteristics, such as initial 

population, mutation and crossover methods, and selection methods. The interface is 

designed as simple as possible to meet engineers’ requirement. A lot of detailed algorithm 

characteristics have been predefined. 

Objective design interface is a key element. Designers use this interface to specify 

what to optimize. As real system always has multiple objectives to optimize, the interface 

is designed intuitively for multiobjective system. Three different multiobjective 
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optimization methods: Weighted sum, Fuzzy fitness, and Pareto front optimization, are 

provided in the interface. Designers are able to select summary variables from a list of 

output variables and select what type of fitness function to use. Software allows users to 

see the fitness design for each objective graphically. GA will find the optimal solution 

based on users’ fitness setting. 

 All mentioned visualization techniques can be used in analyzing GA results 

because GA data are stored into database as well. Except that, EDGA provides additional 

visualization tool to show convergence of GA.  

 

4.1. Genetic Algorithm 

One of the problems met in applying GA into engineering design is how to handle 

tables. A table is defining a nonlinear relationship between two variables. In practice, it is 

using an x-y 2D table to represent the relationship. Any value not in the table can be 

found by interpolating two neighboring x values. It is clear that one design parameter is 

represented by one chromosome. There are three basic ways to represent tables. The 

simplest way uses the interpolation between lower bound and upper bound tables to 

represent a table. The advantage of this method is that only one chromosome is used to 

represent one table. The disadvantage is that the shape of designing table is predefined. 

Another easy way is using the whole table points as genes. For example, table in figure 11 

is defined by 10 x-y points. Ten chromosomes will be used to represent y values of these 

ten points. In this way, designers have much more freedom to design a curve, but the 

dimension increases dramatically. 

The trade-off solution is to use a parameterized curve. A curve can be separated 

into several parts and each part is represented by a parameterized curve. For example, if 

using spine curve, the whole curve can be parameterized into four points. If the starting 

point of the curve is fixed, then the whole curve can be represented by three points. For 

more complex curves, several parameterized curves can be used. The disadvantage of 

parameterized curve is that mutation and crossover operators can easily generate curves 

not meeting curve constraints such as table boundaries and monotonous. Rejection 

techniques have to be used in Genetic algorithm to meet constraints. 
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Figure 11 Design tables 

 

Current GA interface only supports the first way to deal with curves. The 

parameterized curve method requires that users should know how to program 

parameterize curves and implement constraints. It is hard to implement in a general form. 

Additional table parameterizing function can be established to support this feature. 

 

5. Conclusion 
Current industry is lack of a software tool to apply genetic algorithms to 

dynamical modeling problems. We developed a complete set of software tool, called 

EDGA software for Engineering Design using dynamical modeling software. EDGA’s 

generic design enables it to be easy to couple with any models developed in dynamical 

modeling software. EDGA not only provides functionality to optimize system using GA, 

but also provides Design by Experiments and visualization features to further help 

explore the system. Designers are able to use Design by Experiments to do preliminary 

study of complex system and use visualization to explore simulation results. Then 

designers can use GA to optimize system performance on the basis of preliminary study 

results. GA’s results can also be analyzed using visualization. The relationship between 

input and output and the Pareto Front shown in visualization will help designers to pick 

an optimal solution from the optimal solution set located in the Pareto Front. This process 

can be repeated until designers make the final decision. EDGA is the first Design 

Automation Software for dynamical modeling software. The advantages of EDGA can be 

summarized as follows: 
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1. Software generic structure allows easy coupling with any models; 

2. Easy-to-use interface enables users to design easily, especially for designing 

tables; 

3. Multiobjective Genetic algorithms allows different fitness design; 

4. Database makes data storage and management easily. 

5. Visualization extends software optimization capability. 

One of the possible future developments for EDGA is implementation of interactive 

Genetic algorithms. Interactive Genetic Algorithm [69] has caught recent attentions 

because real system optimization is very complex and it is impossible to state how to 

optimize system using GA without studying the system extensively. The idea is to 

separate a complex problem into several subsystems and optimize them separately. 

Designer can interact with design process and connect these subsystems to get a global 

picture of the original picture. Another possible extension for EDGA is implementation of 

various Genetic Algorithms. It has been found that different GAs may have huge 

performance difference on diverse problems. It would be nicer to have more GA options 

for designers. 
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